Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 512(7515): 445-8, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25164755

RESUMEN

The transcriptome is the readout of the genome. Identifying common features in it across distant species can reveal fundamental principles. To this end, the ENCODE and modENCODE consortia have generated large amounts of matched RNA-sequencing data for human, worm and fly. Uniform processing and comprehensive annotation of these data allow comparison across metazoan phyla, extending beyond earlier within-phylum transcriptome comparisons and revealing ancient, conserved features. Specifically, we discover co-expression modules shared across animals, many of which are enriched in developmental genes. Moreover, we use expression patterns to align the stages in worm and fly development and find a novel pairing between worm embryo and fly pupae, in addition to the embryo-to-embryo and larvae-to-larvae pairings. Furthermore, we find that the extent of non-canonical, non-coding transcription is similar in each organism, per base pair. Finally, we find in all three organisms that the gene-expression levels, both coding and non-coding, can be quantitatively predicted from chromatin features at the promoter using a 'universal model' based on a single set of organism-independent parameters.


Asunto(s)
Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Perfilación de la Expresión Génica , Transcriptoma/genética , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/crecimiento & desarrollo , Cromatina/genética , Análisis por Conglomerados , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Histonas/metabolismo , Humanos , Larva/genética , Larva/crecimiento & desarrollo , Modelos Genéticos , Anotación de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Pupa/genética , Pupa/crecimiento & desarrollo , ARN no Traducido/genética , Análisis de Secuencia de ARN
2.
Genome Res ; 26(1): 130-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26560630

RESUMEN

We have generated an improved assembly and gene annotation of the pig X Chromosome, and a first draft assembly of the pig Y Chromosome, by sequencing BAC and fosmid clones from Duroc animals and incorporating information from optical mapping and fiber-FISH. The X Chromosome carries 1033 annotated genes, 690 of which are protein coding. Gene order closely matches that found in primates (including humans) and carnivores (including cats and dogs), which is inferred to be ancestral. Nevertheless, several protein-coding genes present on the human X Chromosome were absent from the pig, and 38 pig-specific X-chromosomal genes were annotated, 22 of which were olfactory receptors. The pig Y-specific Chromosome sequence generated here comprises 30 megabases (Mb). A 15-Mb subset of this sequence was assembled, revealing two clusters of male-specific low copy number genes, separated by an ampliconic region including the HSFY gene family, which together make up most of the short arm. Both clusters contain palindromes with high sequence identity, presumably maintained by gene conversion. Many of the ancestral X-related genes previously reported in at least one mammalian Y Chromosome are represented either as active genes or partial sequences. This sequencing project has allowed us to identify genes--both single copy and amplified--on the pig Y Chromosome, to compare the pig X and Y Chromosomes for homologous sequences, and thereby to reveal mechanisms underlying pig X and Y Chromosome evolution.


Asunto(s)
Cromosomas de los Mamíferos/genética , Evolución Molecular , Porcinos/genética , Cromosoma X/genética , Cromosoma Y/genética , Animales , Secuencia de Bases , Gatos/genética , Perros/genética , Femenino , Conversión Génica , Expresión Génica , Biblioteca de Genes , Orden Génico , Humanos , Masculino , Datos de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de ADN
4.
RNA ; 17(11): 1941-6, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21940779

RESUMEN

During the last decade there has been a great increase in the number of noncoding RNA genes identified, including new classes such as microRNAs and piRNAs. There is also a large growth in the amount of experimental characterization of these RNA components. Despite this growth in information, it is still difficult for researchers to access RNA data, because key data resources for noncoding RNAs have not yet been created. The most pressing omission is the lack of a comprehensive RNA sequence database, much like UniProt, which provides a comprehensive set of protein knowledge. In this article we propose the creation of a new open public resource that we term RNAcentral, which will contain a comprehensive collection of RNA sequences and fill an important gap in the provision of biomedical databases. We envision RNA researchers from all over the world joining a federated RNAcentral network, contributing specialized knowledge and databases. RNAcentral would centralize key data that are currently held across a variety of databases, allowing researchers instant access to a single, unified resource. This resource would facilitate the next generation of RNA research and help drive further discoveries, including those that improve food production and human and animal health. We encourage additional RNA database resources and research groups to join this effort. We aim to obtain international network funding to further this endeavor.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , ARN/química , Animales , Secuencia de Bases , Humanos
5.
Genomics ; 95(2): 105-10, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19909804

RESUMEN

Non-obese diabetic (NOD) mice spontaneously develop type 1 diabetes (T1D) due to the progressive loss of insulin-secreting beta-cells by an autoimmune driven process. NOD mice represent a valuable tool for studying the genetics of T1D and for evaluating therapeutic interventions. Here we describe the development and characterization by end-sequencing of bacterial artificial chromosome (BAC) libraries derived from NOD/MrkTac (DIL NOD) and NOD/ShiLtJ (CHORI-29), two commonly used NOD substrains. The DIL NOD library is composed of 196,032 BACs and the CHORI-29 library is composed of 110,976 BACs. The average depth of genome coverage of the DIL NOD library, estimated from mapping the BAC end-sequences to the reference mouse genome sequence, was 7.1-fold across the autosomes and 6.6-fold across the X chromosome. Clones from this library have an average insert size of 150 kb and map to over 95.6% of the reference mouse genome assembly (NCBIm37), covering 98.8% of Ensembl mouse genes. By the same metric, the CHORI-29 library has an average depth over the autosomes of 5.0-fold and 2.8-fold coverage of the X chromosome, the reduced X chromosome coverage being due to the use of a male donor for this library. Clones from this library have an average insert size of 205 kb and map to 93.9% of the reference mouse genome assembly, covering 95.7% of Ensembl genes. We have identified and validated 191,841 single nucleotide polymorphisms (SNPs) for DIL NOD and 114,380 SNPs for CHORI-29. In total we generated 229,736,133 bp of sequence for the DIL NOD and 121,963,211 bp for the CHORI-29. These BAC libraries represent a powerful resource for functional studies, such as gene targeting in NOD embryonic stem (ES) cell lines, and for sequencing and mapping experiments.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , Genoma , Animales , Cromosomas Artificiales Bacterianos/metabolismo , ADN Complementario/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Endogámicos , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
6.
F1000Res ; 82019.
Artículo en Inglés | MEDLINE | ID: mdl-31824649

RESUMEN

Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) are now recognised as major determinants in cellular regulation. This white paper presents a roadmap for future e-infrastructure developments in the field of IDP research within the ELIXIR framework. The goal of these developments is to drive the creation of high-quality tools and resources to support the identification, analysis and functional characterisation of IDPs. The roadmap is the result of a workshop titled "An intrinsically disordered protein user community proposal for ELIXIR" held at the University of Padua. The workshop, and further consultation with the members of the wider IDP community, identified the key priority areas for the roadmap including the development of standards for data annotation, storage and dissemination; integration of IDP data into the ELIXIR Core Data Resources; and the creation of benchmarking criteria for IDP-related software. Here, we discuss these areas of priority, how they can be implemented in cooperation with the ELIXIR platforms, and their connections to existing ELIXIR Communities and international consortia. The article provides a preliminary blueprint for an IDP Community in ELIXIR and is an appeal to identify and involve new stakeholders.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/metabolismo
7.
Eur J Hum Genet ; 19(7): 827-31, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21364695

RESUMEN

Sequencing the coding regions, the exome, of the human genome is one of the major current strategies to identify low frequency and rare variants associated with human disease traits. So far, the most widely used commercial exome capture reagents have mainly targeted the consensus coding sequence (CCDS) database. We report the design of an extended set of targets for capturing the complete human exome, based on annotation from the GENCODE consortium. The extended set covers an additional 5594 genes and 10.3 Mb compared with the current CCDS-based sets. The additional regions include potential disease genes previously inaccessible to exome resequencing studies, such as 43 genes linked to ion channel activity and 70 genes linked to protein kinase activity. In total, the new GENCODE exome set developed here covers 47.9 Mb and performed well in sequence capture experiments. In the sample set used in this study, we identified over 5000 SNP variants more in the GENCODE exome target (24%) than in the CCDS-based exome sequencing.


Asunto(s)
Bases de Datos Genéticas , Exones/genética , Genoma Humano/genética , Sistemas de Lectura Abierta/genética , Biología Computacional , Secuencia de Consenso/genética , Genómica , Humanos , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA