Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Development ; 146(13)2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31164352

RESUMEN

One fundamental property of a stem cell niche is the exchange of molecular signals between its component cells. Niche models, such as the Drosophila melanogaster testis, have been instrumental in identifying and studying the conserved genetic factors that contribute to niche molecular signalling. Here, we identify jam packed (jam), an allele of Striatin interacting protein (Strip), which is a core member of the highly conserved Striatin-interacting phosphatase and kinase (STRIPAK) complex. In the developing Drosophila testis, Strip cell-autonomously regulates the differentiation and morphology of the somatic lineage, and non-cell-autonomously regulates the proliferation and differentiation of the germline lineage. Mechanistically, Strip acts in the somatic lineage with its STRIPAK partner, Connector of kinase to AP-1 (Cka), where they negatively regulate the Jun N-terminal kinase (JNK) signalling pathway. Our study reveals a novel role for Strip/Cka in JNK pathway regulation during spermatogenesis within the developing Drosophila testis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster , Sistema de Señalización de MAP Quinasas/genética , Proteínas de Unión a Fosfato/fisiología , Espermatogénesis/genética , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Regulación hacia Abajo/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Masculino , Testículo/citología , Testículo/crecimiento & desarrollo , Testículo/metabolismo
2.
Proc Natl Acad Sci U S A ; 111(52): E5643-50, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25512504

RESUMEN

We present single-cell clustering using bifurcation analysis (SCUBA), a novel computational method for extracting lineage relationships from single-cell gene expression data and modeling the dynamic changes associated with cell differentiation. SCUBA draws techniques from nonlinear dynamics and stochastic differential equation theories, providing a systematic framework for modeling complex processes involving multilineage specifications. By applying SCUBA to analyze two complementary, publicly available datasets we successfully reconstructed the cellular hierarchy during early development of mouse embryos, modeled the dynamic changes in gene expression patterns, and predicted the effects of perturbing key transcriptional regulators on inducing lineage biases. The results were robust with respect to experimental platform differences between RT-PCR and RNA sequencing. We selectively tested our predictions in Nanog mutants and found good agreement between SCUBA predictions and the experimental data. We further extended the utility of SCUBA by developing a method to reconstruct missing temporal-order information from a typical single-cell dataset. Analysis of a hematopoietic dataset suggests that our method is effective for reconstructing gene expression dynamics during human B-cell development. In summary, SCUBA provides a useful single-cell data analysis tool that is well-suited for the investigation of developmental processes.


Asunto(s)
Linfocitos B , Diferenciación Celular/fisiología , Embrión de Mamíferos , Epigénesis Genética/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Hematopoyesis/fisiología , Modelos Biológicos , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Proteína Homeótica Nanog , Procesos Estocásticos
3.
J Urol ; 186(4): 1537-44, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21855915

RESUMEN

PURPOSE: Periostin is a secreted extracellular matrix protein that is differentially expressed in the developing kidney. We analyzed the temporal-spatial expression of periostin in the developing kidney and ureter as well as its roles in ureter branching morphogenesis, nephrogenesis and ureter development. MATERIALS AND METHODS: RNA in situ hybridization and immunofluorescence histochemistry were used to investigate the expression of periostin, αv integrin and α-smooth muscle actin during mouse renal and ureteral development. Metanephric explants were cultured in the presence of recombinant periostin, and ureteral branch points/tips and the glomerular number were quantified. Explants were also cultured in the presence of exogenous bone morphogenetic protein 4 and the effect on periostin mRNA levels was determined by quantitative real-time polymerase chain reaction. RESULTS: Periostin expression was observed in the mesenchyme surrounding the kidney and ureter, renal stroma, metanephric mesenchyme, ureter epithelium and developing nephrons. At embryonic day 15.5 periostin and αv integrin, a common subunit of periostin receptors, were co-expressed in smooth muscle cells of the ureter, renal artery and intrarenal arteries. Bone morphogenetic protein 4 up-regulated periostin mRNA expression and exogenous periostin inhibited branching morphogenesis and glomerular number. CONCLUSIONS: Bone morphogenetic protein 4 which inhibits ureteral branching morphogenesis and promotes smooth muscle cell migration in the ureter up-regulated periostin mRNA expression in the developing kidney. Ureteral smooth muscle cells express periostin and αv integrin. Periostin inhibited ureteral branching morphogenesis and glomerular number. Together these results suggest that periostin and bone morphogenetic protein 4 may have a role in branching morphogenesis, nephrogenesis and possibly smooth muscle cell migration.


Asunto(s)
Moléculas de Adhesión Celular/fisiología , Riñón/embriología , Uréter/embriología , Animales , Proteína Morfogenética Ósea 4/fisiología , Moléculas de Adhesión Celular/metabolismo , Inmunohistoquímica , Integrina alfaVbeta3/metabolismo , Riñón/metabolismo , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Morfogénesis , Técnicas de Cultivo de Órganos , Receptores de Vitronectina/metabolismo , Uréter/metabolismo
4.
Blood Rev ; 33: 11-23, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30616747

RESUMEN

Genetic lesions of the ß-globin gene result in haemoglobinopathies such as ß-thalassemia and sickle cell disease. To discover and test new molecular medicines for ß-haemoglobinopathies, cell-based and animal models are now being widely utilised. However, multiple in vitro and in vivo models are required due to the complex structure and regulatory mechanisms of the human globin gene locus, subtle species-specific differences in blood cell development, and the influence of epigenetic factors. Advances in genome sequencing, gene editing, and precision medicine have enabled the first generation of molecular therapies aimed at reactivating, repairing, or replacing silenced or damaged globin genes. Here we compare and contrast current animal and cell-based models, highlighting their complementary strengths, reflecting on how they have informed the scope and direction of the field, and describing some of the novel molecular and precision medicines currently under development or in clinical trial.


Asunto(s)
Regulación de la Expresión Génica , Hemoglobinas/genética , Modelos Biológicos , Animales , Sitios Genéticos , Hematopoyesis/genética , Hemoglobinopatías/sangre , Hemoglobinopatías/genética , Hemoglobinas/metabolismo , Humanos , Investigación Biomédica Traslacional , Globinas alfa/genética , Globinas beta/genética
5.
Sci Rep ; 7(1): 5317, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28706261

RESUMEN

Deficiency in pleomorphic adenoma gene 1 (PLAG1) leads to reduced fertility in male mice, but the mechanism by which PLAG1 contributes to reproduction is unknown. To investigate the involvement of PLAG1 in testicular function, we determined (i) the spatial distribution of PLAG1 in the testis using X-gal staining; (ii) transcriptomic consequences of PLAG1 deficiency in knock-out and heterozygous mice compared to wild-type mice using RNA-seq; and (iii) morphological and functional consequences of PLAG1 deficiency by determining testicular histology, daily sperm production and sperm motility in knock-out and wild-type mice. PLAG1 was sparsely expressed in germ cells and in Sertoli cells. Genes known to be involved in spermatogenesis were downregulated in the testes of knock-out mice, as well as Hsd17b3, which encodes a key enzyme in androgen biosynthesis. In the absence of Plag1, a number of genes involved in immune processes and epididymis-specific genes were upregulated in the testes. Finally, loss of PLAG1 resulted in significantly lowered daily sperm production, in reduced sperm motility, and in several animals, in sloughing of the germinal epithelium. Our results demonstrate that the subfertility seen in male PLAG1-deficient mice is, at least in part, the result of significantly reduced sperm output and sperm motility.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Germinativas/fisiología , Motilidad Espermática , Espermatogénesis , Testículo/fisiología , Animales , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/deficiencia , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Células Germinativas/química , Histocitoquímica , Infertilidad , Masculino , Ratones , Ratones Noqueados , Células de Sertoli/química , Testículo/patología
6.
PLoS One ; 8(3): e55429, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23469164

RESUMEN

BACKGROUND: Mice harbouring gene mutations that cause phenotypic abnormalities during organogenesis are invaluable tools for linking gene function to normal development and human disorders. To generate mouse models harbouring novel alleles that are involved in organogenesis we conducted a phenotype-driven, genome-wide mutagenesis screen in mice using the mutagen N-ethyl-N-nitrosourea (ENU). METHODOLOGY/PRINCIPAL FINDINGS: ENU was injected into male C57BL/6 mice and the mutations transmitted through the germ-line. ENU-induced mutations were bred to homozygosity and G3 embryos screened at embryonic day (E) 13.5 and E18.5 for abnormalities in limb and craniofacial structures, skin, blood, vasculature, lungs, gut, kidneys, ureters and gonads. From 52 pedigrees screened 15 were detected with anomalies in one or more of the structures/organs screened. Using single nucleotide polymorphism (SNP)-based linkage analysis in conjunction with candidate gene or next-generation sequencing (NGS) we identified novel recessive alleles for Fras1, Ift140 and Lig1. CONCLUSIONS/SIGNIFICANCE: In this study we have generated mouse models in which the anomalies closely mimic those seen in human disorders. The association between novel mutant alleles and phenotypes will lead to a better understanding of gene function in normal development and establish how their dysfunction causes human anomalies and disease.


Asunto(s)
Anomalías Congénitas/genética , Modelos Animales de Enfermedad , Etilnitrosourea/toxicidad , Exoma/efectos de los fármacos , Ratones Endogámicos C57BL/genética , Mutágenos/toxicidad , Polimorfismo de Nucleótido Simple , Alelos , Animales , Anomalías Congénitas/embriología , Anomalías Congénitas/etiología , ADN Ligasa (ATP) , ADN Ligasas/genética , Proteínas de la Matriz Extracelular/genética , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Mutación de Línea Germinal/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Factores de Determinación Derecha-Izquierda/genética , Masculino , Ratones , Mutagénesis , Fenotipo
7.
Nat Med ; 15(8): 907-13, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19648928

RESUMEN

Basal-like breast cancers arising in women carrying mutations in the BRCA1 gene, encoding the tumor suppressor protein BRCA1, are thought to develop from the mammary stem cell. To explore early cellular changes that occur in BRCA1 mutation carriers, we have prospectively isolated distinct epithelial subpopulations from normal mammary tissue and preneoplastic specimens from individuals heterozygous for a BRCA1 mutation. We describe three epithelial subsets including basal stem/progenitor, luminal progenitor and mature luminal cells. Unexpectedly, we found that breast tissue from BRCA1 mutation carriers harbors an expanded luminal progenitor population that shows factor-independent growth in vitro. Moreover, gene expression profiling revealed that breast tissue heterozygous for a BRCA1 mutation and basal breast tumors were more similar to normal luminal progenitor cells than any other subset, including the stem cell-enriched population. The c-KIT tyrosine kinase receptor (encoded by KIT) emerged as a key marker of luminal progenitor cells and was more highly expressed in BRCA1-associated preneoplastic tissue and tumors. Our findings suggest that an aberrant luminal progenitor population is a target for transformation in BRCA1-associated basal tumors .


Asunto(s)
Neoplasias de la Mama/genética , Transformación Celular Neoplásica/genética , Genes BRCA1 , Heterocigoto , Células Madre/patología , Neoplasias de la Mama/etiología , Células Cultivadas , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Glándulas Mamarias Humanas/citología , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Modelos Biológicos , Mutación/fisiología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Lesiones Precancerosas/genética , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/patología , Receptores de Progesterona/metabolismo , Células Madre/metabolismo
8.
Proc Natl Acad Sci U S A ; 103(44): 16460-5, 2006 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-17060613

RESUMEN

Mixl1, the sole murine homologue of the Xenopus Mix/Bix family of homeobox transcription factors, is essential for the patterning of axial mesendodermal structures during early embryogenesis. Gene targeting and overexpression studies have implicated Mixl1 as a regulator of hematopoiesis arising in differentiating embryonic stem cells. To assess the role of Mixl1 in the regulation of adult hematopoiesis, we overexpressed Mixl1 in murine bone marrow using a retroviral transduction/transplantation model. Enforced expression of Mixl1 profoundly perturbed hematopoietic lineage commitment and differentiation, giving rise to abnormal myeloid progenitors and impairing erythroid and lymphoid differentiation. Moreover, all mice reconstituted with Mixl1-transduced bone marrow developed fatal, transplantable acute myeloid leukemia with a mean latency period of 200 days. These observations establish a link between enforced Mixl1 expression and leukemogenesis in the mouse.


Asunto(s)
Diferenciación Celular , Hematopoyesis , Proteínas de Homeodominio/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Animales , Médula Ósea/metabolismo , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Leucemia Mieloide Aguda/genética , Ratones , Ratones Transgénicos , Células Mieloides/citología , Células Mieloides/metabolismo , Fenotipo , Tasa de Supervivencia
9.
Stem Cells ; 24(3): 604-14, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16123385

RESUMEN

Leukemia inhibitory factor (LIF) is required to maintain pluripotency and permit self-renewal of murine embryonic stem (ES) cells. LIF binds to a receptor complex of LIFR-beta and gp130 and signals via the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway, with signalling attenuated by suppressor of cytokine signalling (SOCS) proteins. Recent in vivo studies have highlighted the role of SOCS-3 in the negative regulation of signalling via gp130. To determine the role of SOCS-3 in ES cell biology, SOCS-3-null ES cell lines were generated. When cultured in LIF levels that sustain self-renewal of wild-type cells, SOCS-3-null ES cell lines exhibited less self-renewal and greater differentiation into primitive endoderm. The absence of SOCS-3 enhanced JAK-STAT and extracellular signal-related kinase 1/2 (ERK-1/2)-mitogen-activated protein kinase (MAPK) signal transduction via gp130, with higher levels of phosphorylated STAT-1, STAT-3, SH-2 domain-containing cytoplasmic protein tyrosine phosphatase 2 (SHP-2), and ERK-1/2 in steady state and in response to LIF stimulation. Attenuation of ERK signalling by the addition of MAPK/ERK kinase (MEK) inhibitors to SOCS-3-null ES cell cultures rescued the differentiation phenotype, but did not restore proliferation to wild-type levels. In summary, SOCS-3 plays a crucial role in the regulation of the LIF signalling pathway in murine ES cells. Its absence perturbs the balance between activation of the JAK-STAT and SHP-2-ERK-1/2-MAPK pathways, resulting in less self-renewal and a greater potential for differentiation into the primitive endoderm lineage.


Asunto(s)
Diferenciación Celular/genética , Proliferación Celular , Embrión de Mamíferos/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Células Madre/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/deficiencia , Animales , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/genética , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Embrión de Mamíferos/citología , Endodermo/citología , Endodermo/metabolismo , Interleucina-6/farmacología , Factor Inhibidor de Leucemia , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Mutantes , Proteínas Tirosina Quinasas/metabolismo , Células Madre/citología , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo
10.
Biochem Biophys Res Commun ; 333(4): 1361-9, 2005 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-15982639

RESUMEN

Mixl1 is a paired-type homeodomain protein that plays a crucial role in morphogenesis and endoderm differentiation in the murine embryo. To understand how Mixl1 directs embryogenesis, we studied the regulation of Mixl1 expression at a transcriptional level. In HepG2 cells, a genomic fragment encompassing the Mixl1 promoter conferred strong TGF-beta-induced transcription that was dependent on the presence of the DNA-binding protein FoxH1. Further analysis of the Mixl1 promoter identified a proximal response element (PRE) containing SMAD- and FoxH1-binding sites required for TGF-beta responsiveness. The PRE was also responsive to signalling by Nodal, a TGF-beta ligand required for normal embryonic patterning. These results demonstrate for the first time a functional role for TGF-beta ligands in regulation of mammalian Mixl1, identify FoxH1 as an essential transcriptional co-activator, and implicate Nodal as the embryonic regulator of Mixl1 in mesendoderm morphogenesis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Tipificación del Cuerpo/fisiología , Factores de Transcripción Forkhead , Humanos , Ratones , Células 3T3 NIH , Proteína Nodal , Transducción de Señal/fisiología
11.
Cancer ; 104(10): 2092-8, 2005 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-16206293

RESUMEN

BACKGROUND: The NANOG gene, a member of the homeobox family of DNA binding transcription factors, was recently identified in a screen for pluripotency-promoting genes. NANOG overexpression in murine embryonic stem cells is sufficient to maintain self-renewal and to block differentiation. The NANOG gene is located on human chromosome 12p13, a region frequently duplicated in human tumors of germ cell origin and in cultured human embryonic stem cells. Here we investigate the expression and gene copy number of NANOG in human germ cells and tumors of germ cell origin. METHODS: Immunohistochemistry and quantitative polymerase chain reaction (QPCR) were used to examine the expression and gene copy number of the human NANOG gene in germ cell tumors. RESULTS: NANOG protein was detected in germline stem cells (gonocytes) within the developing testis. Immunohistochemistry and quantitative real-time PCR analysis were used to demonstrate that NANOG is highly and specifically expressed in carcinoma in situ (CIS), embryonal carcinomas, and seminomas, but not in teratomas and yolk sac tumors. CONCLUSIONS: NANOG expression in germline stem cells (gonocytes), CIS, embryonal carcinoma, and seminoma reveals a molecular and developmental link between germ cell tumors and the embryonic cells from which they arise. Identification of NANOG as a molecular marker of undifferentiated germ cell tumors provides a novel tool for identifying and classifying tumors of germ cell origin.


Asunto(s)
Biomarcadores de Tumor/análisis , Proteínas de Unión al ADN/biosíntesis , Proteínas de Homeodominio/biosíntesis , Neoplasias de Células Germinales y Embrionarias/metabolismo , Espermatozoides/metabolismo , Proteínas de Unión al ADN/genética , Feto , Dosificación de Gen , Expresión Génica , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Inmunohistoquímica , Masculino , Proteína Homeótica Nanog , Neoplasias de Células Germinales y Embrionarias/genética , Factor 3 de Transcripción de Unión a Octámeros/biosíntesis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética
12.
Dev Dyn ; 230(1): 187-98, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15108323

RESUMEN

The murine Nanog gene, a member of the homeobox family of DNA binding transcription factors, has been shown recently to maintain pluripotency of embryonic stem cells. We have used a sequence homology and expression screen to identify and clone the mouse and human Nanog genes and characterized their phylogenetic context and expression patterns. We report here the gene structure and expression patterns of the mouse Nanog gene, the human Nanog and Nanog2 genes, and six processed human Nanog pseudogenes. Mouse Nanog expression is high in undifferentiated embryonic stem cells and is down-regulated during embryonic stem cell differentiation, concomitant with loss of pluripotency. Murine embryonic Nanog expression is detected in the inner cell mass of the blastocyst. After implantation, Nanog is detectable at embryonic day (E) 6 in proximal epiblast in the region of the presumptive primitive streak. Expression extends distally as the streak elongates during gastrulation and remains restricted to epiblast. Nanog RNA is down-regulated in cells ingressing through the streak to form mesoderm and definitive endoderm. Nanog expression also marks the pluripotent germ cells of the nascent gonad at E11.5-E12.5 and is highly expressed in germ cell tumour and teratoma-derived cell lines. Reverse transcriptase-polymerase chain reaction analysis detected mouse Nanog expression at low levels in several adult tissues. The human Nanog genes are expressed in embryonic stem cells and down-regulated in all adult tissues and differentiated cell lines examined. High levels of human Nanog expression were detected by Northern analysis in the undifferentiated N-Tera embryonal carcinoma cell line. The conservation in gene sequence, structure, and expression of mouse and human Nanog and Nanog2 genes may reflect a common role in the maintenance of pluripotency in both species.


Asunto(s)
Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Blastocisto/metabolismo , Northern Blotting , Diferenciación Celular , Línea Celular , Línea Celular Tumoral , Clonación Molecular , ADN/metabolismo , ADN Complementario/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Etiquetas de Secuencia Expresada , Gástrula/metabolismo , Humanos , Mesodermo/metabolismo , Ratones , Datos de Secuencia Molecular , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros , Filogenia , Unión Proteica , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Ratas , Secuencias Repetitivas de Ácidos Nucleicos , Células Madre/metabolismo , Factores de Tiempo , Distribución Tisular , Factores de Transcripción/metabolismo
13.
Development ; 129(15): 3597-608, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12117810

RESUMEN

In Xenopus, the Mix/Bix family of homeobox genes has been implicated in mesendoderm development. Mixl1 is the only known murine member of this family. To examine the role of Mixl1 in murine embryogenesis, we used gene targeting to create mice bearing a null mutation of Mixl1. Homozygous Mixl1 mutant embryos can be distinguished from their littermates by a marked thickening of the primitive streak. By the early somite stage, embryonic development is arrested, with the formation of abnormal head folds, foreshortened body axis, absence of heart tube and gut, deficient paraxial mesoderm, and an enlarged midline tissue mass that replaces the notochord. Development of extra-embryonic structures is generally normal except that the allantois is often disproportionately large for the size of the mutant embryo. In chimeras, Mixl1(-/-) mutant cells can contribute to all embryonic structures, with the exception of the hindgut, suggesting that Mixl1 activity is most crucial for endodermal differentiation. Mixl1 is therefore required for the morphogenesis of axial mesoderm, the heart and the gut during embryogenesis.


Asunto(s)
Tipificación del Cuerpo , Embrión de Mamíferos/fisiología , Embrión no Mamífero , Proteínas Fetales , Proteínas de Homeodominio/metabolismo , Mesodermo/fisiología , Morfogénesis , Animales , Desarrollo Embrionario y Fetal , Endodermo/fisiología , Marcación de Gen , Genes Reporteros , Proteínas de Homeodominio/genética , Hibridación in Situ , Ratones , Ratones Noqueados , Proteína Nodal , Transducción de Señal , Células Madre/metabolismo , Proteínas de Dominio T Box/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Pez Cebra/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA