Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 76(10): 3082-8, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20305020

RESUMEN

A unique, coleopteran-active protein, termed eCry3.1Ab, was generated following variable-region exchange of a Bacillus thuringiensis lepidopteran-active protein, Cry1Ab, with a Cry3A region. Our results support the hypothesis that this variable-region exchange is responsible for imparting strong bioactivity against the larvae of western corn rootworm (WCR) (Diabrotica virgifera virgifera LeConte), a pest species which is not susceptible to either parent protein sequence. This study demonstrates the potential of successfully engineering a portion(s) of a lepidopteran-active B. thuringiensis sequence so that it has activity against coleopterans. Further elucidation of the eCry3.1Ab activity indicated the importance of variable regions 4 to 6 that were derived from Cry1Ab instead of Cry1Ac. There was some flexibility in making domain III of engineered hybrid insecticidal proteins even more Cry1Ab-like and retaining activity, while there was less flexibility in making domain III more Cry3A-like and retaining activity. In vitro binding studies with brush border membrane vesicles demonstrated that there was specific binding of chymotrypsin-processed modified Cry3A (mCry3A), which was not diminished by addition of a 100-fold molar excess of chymotrypsin-processed eCry3.1Ab or unprocessed eCry3.1Ab. In addition, in the converse experiment, specific binding of chymotrypsin-processed eCry3.1Ab was not diminished by the presence of a 75-fold molar excess of chymotrypsin-processed mCry3A. These data support the hypothesis that eCry3.1Ab can interact with different binding sites than the activated form of mCry3A in the WCR brush border and may provide a different mode of action from the standpoint of resistance management.


Asunto(s)
Bacillus thuringiensis/genética , Proteínas Bacterianas/farmacología , Escarabajos/efectos de los fármacos , Endotoxinas/farmacología , Proteínas Hemolisinas/farmacología , Insecticidas/farmacología , Proteínas Recombinantes de Fusión/farmacología , Secuencia de Aminoácidos , Animales , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/metabolismo , Quimotripsina/metabolismo , Escarabajos/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Larva/efectos de los fármacos , Microvellosidades/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Alineación de Secuencia
2.
Appl Environ Microbiol ; 69(8): 4648-57, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12902253

RESUMEN

The Vip3A protein, secreted by Bacillus spp. during the vegetative stage of growth, represents a new family of insecticidal proteins. In our investigation of the mode of action of Vip3A, the 88-kDa Vip3A full-length toxin (Vip3A-F) was proteolytically activated to an approximately 62-kDa core toxin either by trypsin (Vip3A-T) or lepidopteran gut juice extracts (Vip3A-G). Biotinylated Vip3A-G demonstrated competitive binding to lepidopteran midgut brush border membrane vesicles (BBMV). Furthermore, in ligand blotting experiments with BBMV from the tobacco hornworm, Manduca sexta (Linnaeus), activated Cry1Ab bound to 120-kDa aminopeptidase N (APN)-like and 250-kDa cadherin-like molecules, whereas Vip3A-G bound to 80-kDa and 100-kDa molecules which are distinct from the known Cry1Ab receptors. In addition, separate blotting experiments with Vip3A-G did not show binding to isolated Cry1A receptors, such as M. sexta APN protein, or a cadherin Cry1Ab ecto-binding domain. In voltage clamping assays with dissected midgut from the susceptible insect, M. sexta, Vip3A-G clearly formed pores, whereas Vip3A-F was incapable of pore formation. In the same assay, Vip3A-G was incapable of forming pores with larvae of the nonsusceptible insect, monarch butterfly, Danaus plexippus (Linnaeus). In planar lipid bilayers, both Vip3A-G and Vip3A-T formed stable ion channels in the absence of any receptors, supporting pore formation as an inherent property of Vip3A. Both Cry1Ab and Vip3A channels were voltage independent and highly cation selective; however, they differed considerably in their principal conductance state and cation specificity. The mode of action of Vip3A supports its use as a novel insecticidal agent.


Asunto(s)
Proteínas Bacterianas/farmacología , Toxinas Bacterianas , Endotoxinas/farmacología , Insecticidas/farmacología , Animales , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/metabolismo , Proteínas Hemolisinas , Canales Iónicos/efectos de los fármacos , Canales Iónicos/fisiología , Manduca , Microvellosidades/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA