Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(43): 29614-29623, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37880987

RESUMEN

Solvate ionic liquids (SILs), equimolar amounts of lithium salts and polyether glymes, are well studied highly customisable "designer solvents". Herein the physical, thermal and ion mobility properties of SILs with increased LiTFSI (LiTFSA) concentration, with ligand 1 : >1 LiTFSI stoichiometric ratios, are presented. It was found that between 60-80 °C, the lithium cation diffuses up to 4 times faster than the corresponding anion or ligand (glyme). These systems varied from viscous liquids to self-supporting gels, though were found to thin exponentially when heated to mild temperatures (50-60 °C). They were also found to be thermally stable, up to 200 °C, well in excess of normal operating temperatures. Ion mobility, assessed under an electric potential via ionic conductivity, showed the benefit of SIL optimisation for attaining greater concentrations of Li+ cations to store charge during supercapacitor charging and discharging. Molecular dynamics simulations interrogate the mechanism of enhanced diffusion at high temperatures, revealing a lithium hopping mechanism that implicates the glyme in bridging two lithiums through changes in the denticity.

2.
Mater Horiz ; 11(18): 4321-4328, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39109440

RESUMEN

Solvate ionic liquids (SILs) are a class of ionic liquids where the liquid-state salt is chelated by a coordinating solvent, and of interest due to their advantageous properties such as low vapour pressure and superb thermal and chemical stability for energy storage applications. The electromechanical and piezoelectric effect were studied in lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) solvated by triethylene glycol dimethyl ether (triglyme, G3), forming [Li-G3]TFSI. These effects were also investigated in full solid polymer electrolyte (SPE) used in energy storage devices, consisting of [Li-G3]TFSI paired with an epoxy-based resin system. The SIL's electromechanical response was first established in isolation, as well as within the SPE. Experimental data demonstrates the effect of a major part of the SPE contributing to the electrical potential generation during application of force and subsequent pressurisation as well as depressurisation, underlined by a direct piezoelectric effect. SPE response to applied load is explored after the recent discovery of liquid-to-crystalline phase transition following pressurisation in pure ionic liquids. This finding has the potential to ameliorate the performance of energy storage composites via additional effects of charging such a device by subjecting it to stress, leading to increased efficiency. Results to date show a bulk potential difference across the SIL of up to 150 mV, while the SPE potential response is scaled down due to a significantly lower volume of SIL at the interface (∼30 mV). Nevertheless, such findings can still significantly affect the performance of carbon fibre (CF)-based structural supercapacitors and batteries that are able to store and release electrical energy whilst simultaneously contributing to load-bearing performance.

3.
Chempluschem ; : e202300555, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036452

RESUMEN

Silk fibroin interactions with metallic surfaces can provide utility for medical materials and devices. Toward this goal, titanium alloy (Ti6Al4 V) was covalently grafted with polyacrylamide via electrochemically reducing 4-nitrobenzene diazonium salt in the presence of acrylamide. Analysis of the modified surfaces with FT-IR spectra, SEM and AFM were consistent with surface grafting. Functionalised titanium samples with a silk fibroin membrane, with and without impregnated therapeutics, were used to assess cytocompatibility and drug delivery. Initial cytocompatibility experiments using fibroblasts showed that the functionalised samples, both with and without silk fibroin coatings, supported significant increases between 72-136 % in cell metabolism, compared to the controls after 7 days. A 7-days release profiling showed consistent bacterial inhibition through gentamicin release with average inhibition zones of 239 mm2 . Over a 5-week period, silk fibroin coated samples, both with and without growth factors, supported better human mesenchymal stem cell metabolism with increases reaching 1031 % and 388 %, respectively, compared to samples without the silk fibroin coating with.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA