Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Cell Sci ; 136(13)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37313686

RESUMEN

The γ-tubulin complex (γTuC) is a widely conserved microtubule nucleator, but some of its components, namely GCP4, GCP5 and GCP6 (also known as TUBGCP4, TUBGCP5 and TUBGCP6, respectively), have not been detected in Caenorhabditis elegans. Here, we identified two γTuC-associated proteins in C. elegans, GTAP-1 and GTAP-2, for which apparent orthologs were detected only in the genus Caenorhabditis. GTAP-1 and GTAP-2 were found to localize at centrosomes and the plasma membrane of the germline, and their centrosomal localization was interdependent. In early C. elegans embryos, whereas the conserved γTuC component MZT-1 (also known as MOZART1 and MZT1) was essential for the localization of centrosomal γ-tubulin, depletion of GTAP-1 and/or GTAP-2 caused up to 50% reduction of centrosomal γ-tubulin and precocious disassembly of spindle poles during mitotic telophase. In the adult germline, GTAP-1 and GTAP-2 contributed to efficient recruitment of the γTuC to the plasma membrane. Depletion of GTAP-1, but not of GTAP-2, severely disrupted both the microtubule array and the honeycomb-like structure of the adult germline. We propose that GTAP-1 and GTAP-2 are unconventional components of the γTuC that contribute to the organization of both centrosomal and non-centrosomal microtubules by targeting the γTuC to specific subcellular sites in a tissue-specific manner.


Asunto(s)
Caenorhabditis elegans , Tubulina (Proteína) , Animales , Tubulina (Proteína)/metabolismo , Caenorhabditis elegans/metabolismo , Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Centrosoma/metabolismo , Células Germinativas/metabolismo , Huso Acromático/metabolismo
2.
J Cell Sci ; 135(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35362532

RESUMEN

Centrosomes consist of two centrioles and the surrounding pericentriolar material (PCM). The PCM expands during mitosis in a process called centrosome maturation, in which PCM scaffold proteins play pivotal roles to recruit other centrosomal proteins. In Caenorhabditis elegans, the scaffold protein SPD-5 forms a PCM scaffold in a polo-like kinase 1 (PLK-1) phosphorylation-dependent manner. However, how phosphorylation of SPD-5 promotes PCM scaffold assembly is unclear. Here, we identified three functional domains of SPD-5 through in vivo domain analyses, and propose that sequential domain interactions of SPD-5 are required for mitotic PCM scaffold assembly. Firstly, SPD-5 is targeted to centrioles through a direct interaction between its centriole localization (CL) domain and the centriolar protein PCMD-1. Then, intramolecular and intermolecular interactions between the SPD-5 phospho-regulated multimerization (PReM) domain and the PReM association (PA) domain are enhanced by phosphorylation by PLK-1, which leads to PCM scaffold expansion. Our findings suggest that the sequential domain interactions of scaffold proteins mediated by PLK-1 phosphorylation is an evolutionarily conserved mechanism of PCM scaffold assembly. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteínas de Ciclo Celular , Centrosoma , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Centrosoma/metabolismo , Mitosis , Fosforilación , Proteínas Serina-Treonina Quinasas/genética
3.
Cell Struct Funct ; 46(1): 51-64, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-33967119

RESUMEN

Most organisms have multiple α- and ß-tubulin isotypes that likely contribute to the diversity of microtubule (MT) functions. To understand the functional differences of tubulin isotypes in Caenorhabditis elegans, which has nine α-tubulin isotypes and six ß-tubulin isotypes, we systematically constructed null mutants and GFP-fusion strains for all tubulin isotypes with the CRISPR/Cas9 system and analyzed their expression patterns and levels in adult hermaphrodites. Four isotypes-α-tubulins TBA-1 and TBA-2 and ß-tubulins TBB-1 and TBB-2-were expressed in virtually all tissues, with a distinct tissue-specific spectrum. Other isotypes were expressed in specific tissues or cell types at significantly lower levels than the broadly expressed isotypes. Four isotypes (TBA-5, TBA-6, TBA-9, and TBB-4) were expressed in different subsets of ciliated sensory neurons, and TBB-4 was inefficiently incorporated into mitotic spindle MTs. Taken together, we propose that MTs in C. elegans are mainly composed of four broadly expressed tubulin isotypes and that incorporation of a small amount of tissue-specific isotypes may contribute to tissue-specific MT properties. These newly constructed strains will be useful for further elucidating the distinct roles of tubulin isotypes.Key words: tubulin isotypes, microtubules, C. elegans.


Asunto(s)
Tubulina (Proteína) , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Microtúbulos/metabolismo , Huso Acromático/metabolismo
4.
J Cell Sci ; 130(9): 1652-1661, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28302908

RESUMEN

Microtubules (MTs) are polymers composed of α- and ß-tubulin heterodimers that are generally encoded by genes at multiple loci. Despite implications of distinct properties depending on the isotype, how these heterodimers contribute to the diverse MT dynamics in vivo remains unclear. Here, by using genome editing and depletion of tubulin isotypes following RNAi, we demonstrate that four tubulin isotypes (hereafter referred to as α1, α2, ß1 and ß2) cooperatively confer distinct MT properties in Caenorhabditis elegans early embryos. GFP insertion into each isotype locus reveals their distinct expression levels and MT incorporation rates. Substitution of isotype coding regions demonstrates that, under the same isotype concentration, MTs composed of ß1 have higher switching frequency between growth and shrinkage compared with MTs composed of ß2. Lower concentration of ß-tubulins results in slower growth rates, and the two α-tubulins distinctively affect growth rates of MTs composed of ß1. Alteration of ratio and concentration of isotypes distinctively modulates both growth rate and switching frequency, and affects the amplitude of mitotic spindle oscillation. Collectively, our findings demonstrate that MT dynamics are modulated by the combination (ratio and concentration) of tubulin isotypes with distinct properties, which contributes to create diverse MT behaviors in vivo.


Asunto(s)
Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/citología , Edición Génica , Modelos Biológicos , Huso Acromático/metabolismo , Tubulina (Proteína)/química
5.
Dev Biol ; 391(1): 43-53, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24721716

RESUMEN

The PAF1 complex (PAF1C) is an evolutionarily conserved protein complex involved in transcriptional regulation and chromatin remodeling. How the PAF1C is involved in animal development is still not well understood. Here, we report that, in the nematode Caenorhabditis elegans, the PAF1C is involved in epidermal morphogenesis in late embryogenesis. From an RNAi screen we identified the C. elegans ortholog of a component of the PAF1C, CTR-9, as a gene whose depletion caused various defects during embryonic epidermal morphogenesis, including epidermal cell positioning, ventral enclosure and epidermal elongation. RNAi of orthologs of other four components of the PAF1C (PAFO-1, LEO-1, CDC-73 and RTFO-1) caused similar epidermal defects. In these embryos, whereas the number and cell fate determination of epidermal cells were apparently unaffected, their position and shape were severely disorganized. PAFO-1::mCherry, mCherry::LEO-1 and GFP::RTFO-1 driven by the authentic promoters were detected in the nuclei of a wide range of cells. Nuclear localization of GFP::RTFO-1 was independent of other PAF1C components, while PAFO-1::mCherry and mCherry::LEO-1 dependent on other components except RTFO-1. Epidermis-specific expression of mCherry::LEO-1 rescued embryonic lethality of the leo-1 deletion mutant. Thus, although the PAF1C is universally expressed in C. elegans embryos, its epidermal function is crucial for the viability of this animal.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/embriología , Cromatina/química , Actinas/metabolismo , Alelos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Epidermis/embriología , Eliminación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Morfogénesis , Mutación , Fenotipo , Regiones Promotoras Genéticas , Interferencia de ARN , Factores de Tiempo
6.
Nucleic Acids Res ; 40(17): 8406-15, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22743272

RESUMEN

UV radiation induces two major types of DNA lesions, cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine-pyrimidine photoproducts, which are both primarily repaired by nucleotide excision repair (NER). Here, we investigated how chronic low-dose UV (CLUV)-induced mutagenesis occurs in rad14Δ NER-deficient yeast cells, which lack the yeast orthologue of human xeroderma pigmentosum A (XPA). The results show that rad14Δ cells have a marked increase in CLUV-induced mutations, most of which are C→T transitions in the template strand for transcription. Unexpectedly, many of the CLUV-induced C→T mutations in rad14Δ cells are dependent on translesion synthesis (TLS) DNA polymerase η, encoded by RAD30, despite its previously established role in error-free TLS. Furthermore, we demonstrate that deamination of cytosine-containing CPDs contributes to CLUV-induced mutagenesis. Taken together, these results uncover a novel role for Polη in the induction of C→T transitions through deamination of cytosine-containing CPDs in CLUV-exposed NER deficient cells. More generally, our data suggest that Polη can act as both an error-free and a mutagenic DNA polymerase, depending on whether the NER pathway is available to efficiently repair damaged templates.


Asunto(s)
Reparación del ADN , ADN Polimerasa Dirigida por ADN/fisiología , Mutagénesis , Rayos Ultravioleta , Canavanina/farmacología , Daño del ADN , Enzimas Reparadoras del ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Desaminación , Eliminación de Gen , Dímeros de Pirimidina/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de la radiación , Proteínas de Saccharomyces cerevisiae/genética
7.
Genetics ; 227(2)2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38577765

RESUMEN

Transposable elements are DNA sequences capable of moving within genomes and significantly influence genomic evolution. The nematode Caenorhabditis inopinata exhibits a much higher transposable element copy number than its sister species, Caenorhabditis elegans. In this study, we identified a novel autonomous transposable element belonging to the hAT superfamily from a spontaneous transposable element-insertion mutant in C. inopinata and named this transposon Ci-hAT1. Further bioinformatic analyses uncovered 3 additional autonomous hAT elements-Ci-hAT2, Ci-hAT3, and Ci-hAT4-along with over 1,000 copies of 2 nonautonomous miniature inverted-repeat transposable elements, mCi-hAT1 and mCi-hAT4, likely derived from Ci-hAT1 and Ci-hAT4 through internal deletion. We tracked at least 3 sequential transpositions of Ci-hAT1 over several years. However, the transposition rates of the other 3 autonomous hAT elements were lower, suggesting varying activity levels. Notably, the distribution patterns of the 2 miniature inverted-repeat transposable element families differed significantly: mCi-hAT1 was primarily located in the chromosome arms, a pattern observed in the transposable elements of other Caenorhabditis species, whereas mCi-hAT4 was more evenly distributed across chromosomes. Additionally, interspecific transcriptome analysis indicated that C. inopinata genes with upstream or intronic these miniature inverted-repeat transposable element insertions tend to be more highly expressed than their orthologous genes in C. elegans. These findings highlight the significant role of de-silenced transposable elements in driving the evolution of genomes and transcriptomes, leading to species-specific genetic diversity.


Asunto(s)
Caenorhabditis , Elementos Transponibles de ADN , Animales , Elementos Transponibles de ADN/genética , Caenorhabditis/genética , Genoma de los Helmintos , Evolución Molecular , Regulación de la Expresión Génica , Caenorhabditis elegans/genética
8.
MicroPubl Biol ; 20232023.
Artículo en Inglés | MEDLINE | ID: mdl-37334197

RESUMEN

Intercellular cleaning via autophagy is crucial for maintaining cellular homeostasis, and impaired autophagy has been associated with the accumulation of protein aggregates that can contribute to neurological diseases. Specifically, the loss-of-function mutation in the human autophagy-related gene 5 (ATG5) at E122D has been linked to the pathogenesis of spinocerebellar ataxia in humans. In this study, we generated two homozygous C. elegans strains with mutations (E121D and E121A) at positions corresponding to the human ATG5 ataxia mutation to investigate the effects of ATG5 mutations on autophagy and motility. Our results showed that both mutants exhibited a reduction in autophagy activity and impaired motility, suggesting that the conserved mechanism of autophagy-mediated regulation of motility extends from C. elegans to humans.

9.
Genetics ; 220(2)2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34865044

RESUMEN

Targeted protein degradation using the auxin-inducible degron (AID) system is garnering attention in the research field of Caenorhabditis elegans, because of the rapid and efficient target depletion it affords, which can be controlled by treating the animals with the phytohormone auxin. However, the current AID system has drawbacks, i.e., leaky degradation in the absence of auxin and the requirement for high auxin doses. Furthermore, it is challenging to deplete degron-fused proteins in embryos because of their eggshell, which blocks auxin permeability. Here, we apply an improved AID2 system utilizing AtTIR1(F79G) and 5-phenyl-indole-3-acetic acid (5-Ph-IAA) to C. elegans and demonstrated that it confers better degradation control vs the previous system by suppressing leaky degradation and inducing sharp degradation using 1,300-fold lower 5-Ph-IAA doses. We successfully degraded the endogenous histone H2A.Z protein fused to an mAID degron and disclosed its requirement in larval growth and reproduction, regardless of the presence of maternally inherited H2A.Z molecules. Moreover, we developed an eggshell-permeable 5-Ph-IAA analog, 5-Ph-IAA-AM, that affords an enhanced degradation in laid embryos. Our improved system will contribute to the disclosure of the roles of proteins in C. elegans, in particular those that are involved in embryogenesis and development, through temporally controlled protein degradation.


Asunto(s)
Caenorhabditis elegans , Ácidos Indolacéticos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Desarrollo Embrionario/genética , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Proteínas/metabolismo , Proteolisis
10.
J Biol Chem ; 285(5): 3211-26, 2010 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-19910465

RESUMEN

Disassembly of RecA protein subunits from a RecA filament has long been known to occur during DNA strand exchange, although its importance to this process has been controversial. An Escherichia coli RecA E38K/DeltaC17 double mutant protein displays a unique and pH-dependent mutational separation of DNA pairing and extended DNA strand exchange. Single strand DNA-dependent ATP hydrolysis is catalyzed by this mutant protein nearly normally from pH 6 to 8.5. It will also form filaments on DNA and promote DNA pairing. However, below pH 7.3, ATP hydrolysis is completely uncoupled from extended DNA strand exchange. The products of extended DNA strand exchange do not form. At the lower pH values, disassembly of RecA E38K/DeltaC17 filaments is strongly suppressed, even when homologous DNAs are paired and available for extended DNA strand exchange. Disassembly of RecA E38K/DeltaC17 filaments improves at pH 8.5, whereas complete DNA strand exchange is also restored. Under these sets of conditions, a tight correlation between filament disassembly and completion of DNA strand exchange is observed. This correlation provides evidence that RecA filament disassembly plays a major role in, and may be required for, DNA strand exchange. A requirement for RecA filament disassembly in DNA strand exchange has a variety of ramifications for the current models linking ATP hydrolysis to DNA strand exchange.


Asunto(s)
ADN Bacteriano/genética , ADN de Cadena Simple/genética , Escherichia coli/metabolismo , Nucleoproteínas/química , Rec A Recombinasas/metabolismo , Adenosina Difosfato/química , Adenosina Trifosfato/química , ADN Bacteriano/metabolismo , ADN de Cadena Simple/metabolismo , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Microscopía Electrónica/métodos , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad
11.
Nat Struct Mol Biol ; 13(9): 823-30, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16921379

RESUMEN

Nucleoprotein filaments made up of Rad51 or Dmc1 recombinases, the core structures of recombination, engage in ATP-dependent DNA-strand exchange. The ability of recombinases to form filaments is enhanced by recombination factors termed 'mediators'. Here, we show that the Schizosaccharomyces pombe Swi5-Sfr1 complex, a conserved eukaryotic protein complex, at substoichiometric concentrations stimulates strand exchange mediated by Rhp51 (the S. pombe Rad51 homolog) and Dmc1 on long DNA substrates. Reactions mediated by both recombinases are completely dependent on Swi5-Sfr1, replication protein A (RPA) and ATP, although RPA inhibits the reaction when it is incubated with single-stranded DNA (ssDNA) before the recombinase. The Swi5-Sfr1 complex overcomes, at least partly, the inhibitory effect of RPA, representing a novel class of mediator. Notably, the Swi5-Sfr1 complex preferentially stimulates the ssDNA-dependent ATPase activity of Rhp51, and it increases the amounts of Dmc1 bound to ssDNA.


Asunto(s)
ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Recombinasa Rad51/metabolismo , Recombinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , ADN de Hongos/química , Conformación de Ácido Nucleico , Unión Proteica
12.
DNA Repair (Amst) ; 7(1): 1-9, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17716957

RESUMEN

The Schizosaccharomyces pombe Swi5 protein forms two distinct protein complexes, Swi5-Sfr1 and Swi5-Swi2, each of which plays an important role in the related but functionally distinct processes of homologous recombination and mating-type switching, respectively. The Swi5-Sfr1 mediator complex has been shown to associate with the two RecA-like recombinases, Rhp51 (spRad51) and Dmc1, and to stimulate in vitro DNA strand exchange reactions mediated by these proteins. Genetic analysis indicates that Swi5-Sfr1 works independently of another mediator complex, Rhp55-Rhp57, during Rhp51-dependent recombinational repair. In addition, mutations affecting the two mediators generate distinct repair spectra of HO endonuclease-induced DNA double strand breaks, suggesting that these recombination mediators differently regulate recombination outcomes in an independent manner.


Asunto(s)
ADN de Hongos/genética , Recombinación Genética/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/metabolismo , Reparación del ADN , Genes Fúngicos , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
14.
BMC Microbiol ; 4: 2, 2004 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-14718065

RESUMEN

BACKGROUND: Deinococcus radiodurans R1 is one of the most radiation-resistant organisms known and is able to repair an unusually large amount of DNA damage without induced mutation. Single-stranded DNA-binding (SSB) protein is an essential protein in all organisms and is involved in DNA replication, recombination and repair. The published genomic sequence from Deinococcus radiodurans includes a putative single-stranded DNA-binding protein gene (ssb; DR0100) requiring a translational frameshift for synthesis of a complete SSB protein. The apparently tripartite gene has inspired considerable speculation in the literature about potentially novel frameshifting or RNA editing mechanisms. Immediately upstream of the ssb gene is another gene (DR0099) given an ssb-like annotation, but left unexplored. RESULTS: A segment of the Deinococcus radiodurans strain R1 genome encompassing the ssb gene has been re-sequenced, and two errors involving omitted guanine nucleotides have been documented. The corrected sequence incorporates both of the open reading frames designated DR0099 and DR0100 into one contiguous ssb open reading frame (ORF). The corrected gene requires no translational frameshifts and contains two predicted oligonucleotide/oligosaccharide-binding (OB) folds. The protein has been purified and its sequence is closely related to the Thermus thermophilus and Thermus aquaticus SSB proteins. Like the Thermus SSB proteins, the SSBDr functions as a homodimer. The Deinococcus radiodurans SSB homodimer stimulates Deinococcus radiodurans RecA protein and Escherichia coli RecA protein-promoted DNA three-strand exchange reactions with at least the same efficiency as the Escherichia coli SSB homotetramer. CONCLUSIONS: The correct Deinococcus radiodurans ssb gene is a contiguous open reading frame that codes for the largest bacterial SSB monomer identified to date. The Deinococcus radiodurans SSB protein includes two OB folds per monomer and functions as a homodimer. The Deinococcus radiodurans SSB protein efficiently stimulates Deinococcus radiodurans RecA and also Escherichia coli RecA protein-promoted DNA strand exchange reactions. The identification and purification of Deinococcus radiodurans SSB protein not only allows for greater understanding of the SSB protein family but provides an essential yet previously missing player in the current efforts to understand the extraordinary DNA repair capacity of Deinococcus radiodurans.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/genética , Deinococcus/genética , Proteínas de Unión al ADN/aislamiento & purificación , Proteínas de Unión al ADN/fisiología , Dimerización , Rec A Recombinasas/metabolismo
15.
Mol Cell Biol ; 30(20): 4840-50, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20713444

RESUMEN

Differential posttranslational modification of proliferating cell nuclear antigen (PCNA) by ubiquitin or SUMO plays an important role in coordinating the processes of DNA replication and DNA damage tolerance. Previously it was shown that the loss of RAD6-dependent error-free postreplication repair (PRR) results in DNA damage checkpoint-mediated G(2) arrest in cells exposed to chronic low-dose UV radiation (CLUV), whereas wild-type and nucleotide excision repair-deficient cells are largely unaffected. In this study, we report that suppression of homologous recombination (HR) in PRR-deficient cells by Srs2 and PCNA sumoylation is required for checkpoint activation and checkpoint maintenance during CLUV irradiation. Cyclin-dependent kinase (CDK1)-dependent phosphorylation of Srs2 did not influence checkpoint-mediated G(2) arrest or maintenance in PRR-deficient cells but was critical for HR-dependent checkpoint recovery following release from CLUV exposure. These results indicate that Srs2 plays an important role in checkpoint-mediated reversible G(2) arrest in PRR-deficient cells via two separate HR-dependent mechanisms. The first (required to suppress HR during PRR) is regulated by PCNA sumoylation, whereas the second (required for HR-dependent recovery following CLUV exposure) is regulated by CDK1-dependent phosphorylation.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Proteína Quinasa CDC2/metabolismo , ADN Helicasas/genética , Reparación del ADN , Replicación del ADN , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fase G2/efectos de la radiación , Eliminación de Gen , Genes Fúngicos , Modelos Biológicos , Mutación , Fosforilación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Tolerancia a Radiación/genética , Tolerancia a Radiación/fisiología , Recombinación Genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de la radiación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Rayos Ultravioleta
16.
Biochemistry ; 41(21): 6595-604, 2002 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-12022863

RESUMEN

The 244-nm excited transient UV resonance Raman spectra are observed for the refolding intermediates of horse apomyoglobin (h-apoMb) with a newly constructed mixed flow cell system, and the results are interpreted on the basis of the spectra observed for the equilibrium acid unfolding of the same protein. The dead time of mixing, which was determined with the appearance of UV Raman bands of imidazolium upon mixing of imidazole with acid, was 150 micros under the flow rate that was adopted. The pH-jump experiments of h-apoMb from pH 2.2 to 5.6 conducted with this device demonstrated the presence of three folding intermediates. On the basis of the analysis of W3 and W7 bands of Trp7 and Trp14, the first intermediate, formed before 250 micros, involved incorporation of Trp14 into the alpha-helix from a random coil. The frequency shift of the W3 band of Trp14 observed for this process was reproduced with a model peptide of the A helix when it forms the alpha-helix. In the second intermediate, formed around 1 ms after the start of refolding, the surroundings of both Trp7 and Trp14 were significantly hydrophobic, suggesting the formation of the hydrophobic core. In the third intermediate appearing around 3 ms, the hydrophobicity was relaxed to the same level as that of the pH 4 equilibrium intermediate, which was investigated in detail with the stationary state technique. The change from the third intermediate to the native state needs more time than 40 ms, while the appearance of the native spectrum after the mixing of the same solutions was confirmed separately.


Asunto(s)
Apoproteínas/química , Mioglobina/química , Pliegue de Proteína , Espectrometría Raman/métodos , Triptófano/química , Animales , Dicroismo Circular , Holoenzimas/química , Caballos , Ácido Clorhídrico/química , Concentración de Iones de Hidrógeno , Imidazoles/química , Cinética , Modelos Moleculares , Fragmentos de Péptidos/química , Estructura Secundaria de Proteína , Rayos Ultravioleta , Ballenas
17.
Biopolymers ; 67(4-5): 207-13, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12012433

RESUMEN

A localized small structural change is converted to a higher order conformational change of protein and extends to a mesoscopic scale to induce a physiological function. To understand such features of protein, ultrafast dynamics of myoglobin (Mb) following photolysis of carbon monoxide were investigated. Recent results are summarized here with a stress on structural and vibrational energy relaxation. The core expansion of heme takes place within 2 ps but the out of plane displacement of the heme iron and the accompanying protein conformational change occur in 10 and 100 s of the picosecond regimes, respectively. Unexpectedly, it was found from UV resonance Raman spectra that Trp7 in the N-terminal region and Tyr151 in the C-terminal region undergo appreciable structural changes upon ligand binding-dissociation while Tyr104, Tyr146, and Trp14 do not. Because of the communication between the movements of these surface residues and the heme iron, the rate of spectral change of the iron-histidine (Fe- His) stretching band after CO photodissociation is influenced by the viscosity of solvent. Temporal changes of the anti-Stokes Raman intensity demonstrated immediate generation of vibrationally excited heme upon photodissociation and its decay with a time constant of 1-2 ps.


Asunto(s)
Mioglobina/química , Espectrometría Raman/métodos , Animales , Hemo/química , Caballos , Conformación Proteica , Estructura Terciaria de Proteína , Factores de Tiempo , Triptófano/química , Vibración
18.
J Biol Chem ; 278(52): 52710-23, 2003 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-14530291

RESUMEN

The RecA proteins of Escherichia coli (Ec) and Deinococcus radiodurans (Dr) both promote a DNA strand exchange reaction involving two duplex DNAs. The four-strand exchange reaction promoted by the DrRecA protein is similar to that promoted by EcRecA, except that key parts of the reaction are inhibited by Ec single-stranded DNA-binding protein (SSB). In the absence of SSB, the initiation of strand exchange is greatly enhanced by dsDNA-ssDNA junctions at the ends of DNA gaps. This same trend is seen with the EcRecA protein. The results lead to an expansion of published hypotheses for the pathway for RecA-mediated DNA pairing, in which the slow first order step (observed in several studies) involves a structural transition to a state we designate P. The P state is identical to the state found when RecA is bound to double-stranded (ds) DNA. The structural state present when the RecA protein is bound to single-stranded (ss) DNA is designated A. The DNA pairing model in turn facilitates an articulation of three additional conclusions arising from the present work. 1) When a segment of a RecA filament bound to ssDNA is forced into the P state (as RecA bound to the ssDNA immediately adjacent to dsDNA-ssDNA junction), the segment becomes "pairing enhanced." 2) The unusual DNA pairing properties of the D. radiodurans RecA protein can be explained by postulating this protein has a more stringent requirement to initiate DNA strand exchange from the P state. 3) RecA filaments bound to dsDNA (P state) have directly observable structural changes relative to RecA filaments bound to ssDNA (A state), involving the C-terminal domain.


Asunto(s)
ADN/química , Rec A Recombinasas/química , Proteínas Bacterianas/química , Emparejamiento Base , ADN de Cadena Simple/química , Deinococcus/metabolismo , Relación Dosis-Respuesta a Droga , Escherichia coli/metabolismo , Procesamiento de Imagen Asistido por Computador , Cinética , Microscopía Electrónica , Modelos Genéticos , Modelos Moleculares , Conformación de Ácido Nucleico , Plásmidos/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , Rec A Recombinasas/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA