Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(4): e2210632120, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36669117

RESUMEN

Plant cells are surrounded by a cell wall and do not migrate, which makes the regulation of cell division orientation crucial for development. Regulatory mechanisms controlling cell division orientation may have contributed to the evolution of body organization in land plants. The GRAS family of transcription factors was transferred horizontally from soil bacteria to an algal common ancestor of land plants. SHORTROOT (SHR) and SCARECROW (SCR) genes in this family regulate formative periclinal cell divisions in the roots of flowering plants, but their roles in nonflowering plants and their evolution have not been studied in relation to body organization. Here, we show that SHR cell autonomously inhibits formative periclinal cell divisions indispensable for leaf vein formation in the moss Physcomitrium patens, and SHR expression is positively and negatively regulated by SCR and the GRAS member LATERAL SUPPRESSOR, respectively. While precursor cells of a leaf vein lacking SHR usually follow the geometry rule of dividing along the division plane with the minimum surface area, SHR overrides this rule and forces cells to divide nonpericlinally. Together, these results imply that these bacterially derived GRAS transcription factors were involved in the establishment of the genetic regulatory networks modulating cell division orientation in the common ancestor of land plants and were later adapted to function in flowering plant and moss lineages for their specific body organizations.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , División Celular/genética , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Mol Biol Evol ; 41(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38857185

RESUMEN

Body shape and size diversity and their evolutionary rates correlate with species richness at the macroevolutionary scale. However, the molecular genetic mechanisms underlying the morphological diversification across related species are poorly understood. In beetles, which account for one-fourth of the known species, adaptation to different trophic niches through morphological diversification appears to have contributed to species radiation. Here, we explored the key genes for the morphological divergence of the slender to stout body shape related to divergent feeding methods on large to small snails within the genus Carabus. We show that the zinc-finger transcription factor encoded by odd-paired (opa) controls morphological variation in the snail-feeding ground beetle Carabus blaptoides. Specifically, opa was identified as the gene underlying the slender to stout morphological difference between subspecies through genetic mapping and functional analysis via gene knockdown. Further analyses revealed that changes in opa cis-regulatory sequences likely contributed to the differences in body shape and size between C. blaptoides subspecies. Among opa cis-regulatory sequences, single nucleotide polymorphisms on the transcription factor binding sites may be associated with the morphological differences between C. blaptoides subspecies. opa was highly conserved in a wide range of taxa, especially in beetles. Therefore, opa may play an important role in adaptive morphological divergence in beetles.


Asunto(s)
Escarabajos , Caracoles , Factores de Transcripción , Animales , Escarabajos/genética , Escarabajos/anatomía & histología , Caracoles/genética , Caracoles/anatomía & histología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Evolución Biológica , Polimorfismo de Nucleótido Simple
3.
Plant J ; 115(2): 563-576, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37058128

RESUMEN

An Arabidopsis mutant displaying impaired stomatal responses to CO2 , cdi4, was isolated by a leaf thermal imaging screening. The mutated gene PECT1 encodes CTP:phosphorylethanolamine cytidylyltransferase. The cdi4 exhibited a decrease in phosphatidylethanolamine levels and a defect in light-induced stomatal opening as well as low-CO2 -induced stomatal opening. We created RNAi lines in which PECT1 was specifically repressed in guard cells. These lines are impaired in their stomatal responses to low-CO2 concentrations or light. Fungal toxin fusicoccin (FC) promotes stomatal opening by activating plasma membrane H+ -ATPases in guard cells via phosphorylation. Arabidopsis H+ -ATPase1 (AHA1) has been reported to be highly expressed in guard cells, and its activation by FC induces stomatal opening. The cdi4 and PECT1 RNAi lines displayed a reduced stomatal opening response to FC. However, similar to in the wild-type, cdi4 maintained normal levels of phosphorylation and activation of the stomatal H+ -ATPases after FC treatment. Furthermore, the cdi4 displayed normal localization of GFP-AHA1 fusion protein and normal levels of AHA1 transcripts. Based on these results, we discuss how PECT1 could regulate CO2 - and light-induced stomatal movements in guard cells in a manner that is independent and downstream of the activation of H+ -ATPases. [Correction added on 15 May 2023, after first online publication: The third sentence is revised in this version.].


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Fosfatidiletanolaminas/metabolismo , Estomas de Plantas/metabolismo , Adenosina Trifosfatasas/metabolismo , Luz , ATPasas de Translocación de Protón/metabolismo
4.
New Phytol ; 241(2): 665-675, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37865886

RESUMEN

Anisotropic cell expansion is crucial for the morphogenesis of land plants, as cell migration is restricted by the rigid cell wall. The anisotropy of cell expansion is regulated by mechanisms acting on the deposition or modification of cell wall polysaccharides. Besides the polysaccharide components in the cell wall, a layer of hydrophobic cuticle covers the outer cell wall and is subjected to tensile stress that mechanically restricts cell expansion. However, the molecular machinery that deposits cuticle materials in the appropriate spatiotemporal manner to accommodate cell and tissue expansion remains elusive. Here, we report that PpABCB14, an ATP-binding cassette transporter in the moss Physcomitrium patens, regulates the anisotropy of cell expansion. PpABCB14 localized to expanding regions of leaf cells. Deletion of PpABCB14 resulted in impaired anisotropic cell expansion. Unexpectedly, the cuticle proper was reduced in the mutants, and the cuticular lipid components decreased. Moreover, induced PpABCB14 expression resulted in deformed leaf cells with increased cuticle lipid accumulation on the cell surface. Taken together, PpABCB14 regulates the anisotropy of cell expansion via cuticle deposition, revealing a regulatory mechanism for cell expansion in addition to the mechanisms acting on cell wall polysaccharides.


Asunto(s)
Bryopsida , Bryopsida/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Hojas de la Planta/metabolismo , Polisacáridos/metabolismo , Lípidos
5.
New Phytol ; 234(1): 137-148, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35067949

RESUMEN

DNA topoisomerase 1 (TOP1) plays general roles in DNA replication and transcription by regulating DNA topology in land plants and metazoans. TOP1 is also involved in specific developmental events; however, whether TOP1 plays a conserved developmental role among multicellular organisms is unknown. Here, we investigated the developmental roles of TOP1 in the moss Physcomitrium (Physcomitrella) patens with gene targeting, microscopy, 3D image segmentation and crossing experiments. We discovered that the disruption of TOP1α, but not its paralogue TOP1ß, leads to a defect in fertilisation and subsequent sporophyte formation in P. patens. In the top1α mutant, the egg cell was functional for fertilisation, while sperm cells were fewer and infertile with disordered structures. We observed that the nuclei volume of wild-type sperm cells synchronously decreases during antheridium development, indicating chromatin condensation towards the compact sperm head. By contrast, the top1α mutant exhibited attenuated cell divisions and asynchronous and defective contraction of the nuclei of sperm cells throughout spermatogenesis. These results indicate that TOP1α is involved in cell division and chromatin condensation during spermatogenesis in P. patens. Our results suggest that the regulation of DNA topology by TOP1 plays a key role in spermatogenesis in both land plants and metazoans.


Asunto(s)
Bryopsida , Bryopsida/genética , División Celular , Espermatogénesis
6.
Plant J ; 101(6): 1318-1330, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31674691

RESUMEN

In Arabidopsis thaliana the ANGUSTIFOLIA (AN) gene regulates the width of leaves by controlling the diffuse growth of leaf cells in the medio-lateral direction. In the genome of the moss Physcomitrella patens, we found two normal ANs (PpAN1-1 and 1-2). Both PpAN1 genes complemented the A. thaliana an-1 mutant phenotypes. An analysis of spatiotemporal promoter activity of each PpAN1 gene, using transgenic lines that contained each PpAN1-promoter- uidA (GUS) gene, showed that both promoters are mainly active in the stems of haploid gametophores and in the middle to basal region of the young sporophyte that develops into the seta and foot. Analyses of the knockout lines for PpAN1-1 and PpAN1-2 genes suggested that these genes have partially redundant functions and regulate gametophore height by controlling diffuse cell growth in gametophore stems. In addition, the seta and foot were shorter and thicker in diploid sporophytes, suggesting that cell elongation was reduced in the longitudinal direction, whereas no defects were detected in tip-growing protonemata. These results indicate that both PpAN1 genes in P. patens function in diffuse growth of the haploid and diploid generations but not in tip growth. To visualize microtubule distribution in gametophore cells of P. patens, transformed lines expressing P. patens α-tubulin fused to sGFP were generated. Contrary to expectations, the orientation of microtubules in the tips of gametophores in the PpAN1-1/1-2 double-knockout lines was unchanged. The relationships among diffuse cell growth, cortical microtubules and AN proteins are discussed.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Bryopsida/genética , Genes de Plantas/fisiología , Células Germinativas de las Plantas/crecimiento & desarrollo , Proteínas Represoras/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Bryopsida/crecimiento & desarrollo , Bryopsida/metabolismo , Diploidia , Técnicas de Silenciamiento del Gen , Genes de Plantas/genética , Células Germinativas de las Plantas/metabolismo , Haploidia , Filogenia , Plantas Modificadas Genéticamente , Proteínas Represoras/genética
7.
Proc Biol Sci ; 288(1943): 20202568, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33499794

RESUMEN

Organisms withstand normal ranges of environmental fluctuations by producing a set of phenotypes genetically programmed as a reaction norm; however, extreme conditions can expose a misregulation of phenotypes called a hidden reaction norm. Although an environment consists of multiple factors, how combinations of these factors influence a reaction norm is not well understood. To elucidate the combinatorial effects of environmental factors, we studied the leaf shape plasticity of the carnivorous pitcher plant Cephalotus follicularis. Clonally propagated plants were subjected to 12-week-long growth experiments in different conditions controlled by growth chambers. Here, we show that the dimorphic response of forming a photosynthetic flat leaf or an insect-trapping pitcher leaf is regulated by two covarying environmental cues: temperature and photoperiod. Even within the normal ranges of temperature and photoperiod, unusual combinations of the two induced the production of malformed leaves that were rarely observed under the environmentally typical combinations. We identified such cases in combinations of a summer temperature with a short-to-neutral day length, whose average frequency in the natural Cephalotus habitats corresponded to a once-in-a-lifetime event for this perennial species. Our results suggest that even if individual cues are within the range of natural fluctuations, a hidden reaction norm can be exposed under their discordant combinations. We anticipate that climate change may challenge organismal responses through not only extreme cues but also through uncommon combinations of benign cues.


Asunto(s)
Señales (Psicología) , Hojas de la Planta , Animales , Fenotipo , Fotoperiodo , Plantas
8.
J Plant Res ; 134(1): 3-17, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33415544

RESUMEN

Plant movements are generally slow, but some plant species have evolved the ability to move very rapidly at speeds comparable to those of animals. Whereas movement in animals relies on the contraction machinery of muscles, many plant movements use turgor pressure as the primary driving force together with secondarily generated elastic forces. The movement of stomata is the best-characterized model system for studying turgor-driven movement, and many gene products responsible for this movement, especially those related to ion transport, have been identified. Similar gene products were recently shown to function in the daily sleep movements of pulvini, the motor organs for macroscopic leaf movements. However, it is difficult to explain the mechanisms behind rapid multicellular movements as a simple extension of the mechanisms used for unicellular or slow movements. For example, water transport through plant tissues imposes a limit on the speed of plant movements, which becomes more severe as the size of the moving part increases. Rapidly moving traps in carnivorous plants overcome this limitation with the aid of the mechanical behaviors of their three-dimensional structures. In addition to a mechanism for rapid deformation, rapid multicellular movements also require a molecular system for rapid cell-cell communication, along with a mechanosensing system that initiates the response. Electrical activities similar to animal action potentials are found in many plant species, representing promising candidates for the rapid cell-cell signaling behind rapid movements, but the molecular entities of these electrical signals remain obscure. Here we review the current understanding of rapid plant movements with the aim of encouraging further biological studies into this fascinating, challenging topic.


Asunto(s)
Movimiento , Plantas , Animales , Modelos Biológicos , Hojas de la Planta
9.
Nucleic Acids Res ; 47(9): 4539-4553, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30873540

RESUMEN

Next-generation sequencing technologies have made it possible to carry out transcriptome analysis at the single-cell level. Single-cell RNA-sequencing (scRNA-seq) data provide insights into cellular dynamics, including intercellular heterogeneity as well as inter- and intra-cellular fluctuations in gene expression that cannot be studied using populations of cells. The utilization of scRNA-seq is, however, restricted to cell types that can be isolated from their original tissues, and it can be difficult to obtain precise positional information for these cells in situ. Here, we established single cell-digital gene expression (1cell-DGE), a method of scRNA-seq that uses micromanipulation to extract the contents of individual living cells in intact tissue while recording their positional information. With 1cell-DGE, we could detect differentially expressed genes (DEGs) during the reprogramming of leaf cells of the moss Physcomitrella patens, identifying 6382 DEGs between cells at 0 and 24 h after excision. Furthermore, we identified a subpopulation of reprogramming cells based on their pseudotimes, which were calculated using transcriptome profiles at 24 h. 1cell-DGE with microcapillary manipulation can be used to analyze the gene expression of individual cells without detaching them from their tightly associated tissues, enabling us to retain positional information and investigate cell-cell interactions.


Asunto(s)
Bryopsida/genética , Reprogramación Celular/genética , Perfilación de la Expresión Génica/métodos , Análisis de la Célula Individual/métodos , Hojas de la Planta/genética , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Transcriptoma/genética
10.
Proc Natl Acad Sci U S A ; 114(42): E8847-E8854, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28973935

RESUMEN

Proper orientation of the cell division axis is critical for asymmetric cell divisions that underpin cell differentiation. In animals, centrosomes are the dominant microtubule organizing centers (MTOC) and play a pivotal role in axis determination by orienting the mitotic spindle. In land plants that lack centrosomes, a critical role of a microtubular ring structure, the preprophase band (PPB), has been observed in this process; the PPB is required for orienting (before prophase) and guiding (in telophase) the mitotic apparatus. However, plants must possess additional mechanisms to control the division axis, as certain cell types or mutants do not form PPBs. Here, using live imaging of the gametophore of the moss Physcomitrella patens, we identified acentrosomal MTOCs, which we termed "gametosomes," appearing de novo and transiently in the prophase cytoplasm independent of PPB formation. We show that gametosomes are dispensable for spindle formation but required for metaphase spindle orientation. In some cells, gametosomes appeared reminiscent of the bipolar MT "polar cap" structure that forms transiently around the prophase nucleus in angiosperms. Specific disruption of the polar caps in tobacco cells misoriented the metaphase spindles and frequently altered the final division plane, indicating that they are functionally analogous to the gametosomes. These results suggest a broad use of transient MTOC structures as the spindle orientation machinery in plants, compensating for the evolutionary loss of centrosomes, to secure the initial orientation of the spindle in a spatial window that allows subsequent fine-tuning of the division plane axis by the guidance machinery.


Asunto(s)
Bryopsida/citología , Citoplasma/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Actinas/genética , Actinas/metabolismo , División Celular Asimétrica , Citoplasma/ultraestructura , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Células Vegetales , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Profase , Imagen de Lapso de Tiempo/métodos , Nicotiana/citología , Nicotiana/genética , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
11.
Development ; 142(3): 444-53, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25605779

RESUMEN

The root meristem (RM) is a fundamental structure that is responsible for postembryonic root growth. The RM contains the quiescent center (QC), stem cells and frequently dividing meristematic cells, in which the timing and the frequency of cell division are tightly regulated. In Arabidopsis thaliana, several gain-of-function analyses have demonstrated that peptide ligands of the Clavata3 (CLV3)/embryo surrounding region-related (CLE) family are important for maintaining RM size. Here, we demonstrate that a plant U-box E3 ubiquitin ligase, PUB4, is a novel downstream component of CLV3/CLE signaling in the RM. Mutations in PUB4 reduced the inhibitory effect of exogenous CLV3/CLE peptide on root cell proliferation and columella stem cell maintenance. Moreover, pub4 mutants grown without exogenous CLV3/CLE peptide exhibited characteristic phenotypes in the RM, such as enhanced root growth, increased number of cortex/endodermis stem cells and decreased number of columella layers. Our phenotypic and gene expression analyses indicated that PUB4 promotes expression of a cell cycle regulatory gene, CYCD6;1, and regulates formative periclinal asymmetric cell divisions in endodermis and cortex/endodermis initial daughters. These data suggest that PUB4 functions as a global regulator of cell proliferation and the timing of asymmetric cell division that are important for final root architecture.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , División Celular Asimétrica/fisiología , Proliferación Celular/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Meristema/citología , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , División Celular Asimétrica/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/genética , Clonación Molecular , Ciclinas/metabolismo , Perfilación de la Expresión Génica , Microscopía Confocal , Plantas Modificadas Genéticamente , Transducción de Señal/genética , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas/genética
12.
Biochim Biophys Acta ; 1859(7): 860-70, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27179444

RESUMEN

Packaging of eukaryotic DNA largely depends on histone modifications that affect the accessibility of DNA to transcriptional regulators, thus controlling gene expression. The Polycomb group (PcG) chromatin remodeling complex deposits a methyl group on lysine 27 of histone 3 leading to repressed gene expression. Plants encode homologs of the Enhancer of zeste (E(z)), a component of the PcG complex from Drosophila, one of which is a SET domain protein designated CURLY LEAF (CLF). Although this SET domain protein exhibits a strong correlation with the presence of the H3K27me3 mark in plants, the methyl-transferase activity and specificity of its SET domain have not been directly tested in-vivo. Using the evolutionary early-diverged land plant model species Physcomitrella patens we show that abolishment of a single copy gene PpCLF, as well as an additional member of the PcG complex, FERTILIZATION-INDEPENDENT ENDOSPERM (PpFIE), results in a specific loss of tri-methylation of H3K27. Using site-directed mutagenesis of key residues, we revealed that H3K27 tri-methylation is mediated by the SET domain of the CLF protein. Moreover, the abolishment of H3K27me3 led to enhanced expression of transcription factor genes. This in turn led to the development of fertilization-independent sporophyte-like structures, as observed in PpCLF and PpFIE null mutants. Overall, our results demonstrate the role of PpCLF as a SET protein in tri-methylation of H3K27 in-vivo and the importance of this modification in regulating the expression of transcription factor genes involved in developmental programs of P. patens.


Asunto(s)
Bryopsida/crecimiento & desarrollo , Bryopsida/genética , N-Metiltransferasa de Histona-Lisina/fisiología , Histonas/metabolismo , Proteínas del Grupo Polycomb/fisiología , Secuencia de Aminoácidos , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Proteínas de Homeodominio/fisiología , Lisina/metabolismo , Metilación , Datos de Secuencia Molecular , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Homología de Secuencia de Aminoácido
13.
Development ; 141(8): 1660-70, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24715456

RESUMEN

Many differentiated plant cells can dedifferentiate into stem cells, reflecting the remarkable developmental plasticity of plants. In the moss Physcomitrella patens, cells at the wound margin of detached leaves become reprogrammed into stem cells. Here, we report that two paralogous P. patens WUSCHEL-related homeobox 13-like (PpWOX13L) genes, homologs of stem cell regulators in flowering plants, are transiently upregulated and required for the initiation of cell growth during stem cell formation. Concordantly, Δppwox13l deletion mutants fail to upregulate genes encoding homologs of cell wall loosening factors during this process. During the moss life cycle, most of the Δppwox13l mutant zygotes fail to expand and initiate an apical stem cell to form the embryo. Our data show that PpWOX13L genes are required for the initiation of cell growth specifically during stem cell formation, in analogy to WOX stem cell functions in seed plants, but using a different cellular mechanism.


Asunto(s)
Bryopsida/citología , Bryopsida/genética , Genes de Plantas/genética , Hojas de la Planta/citología , Proteínas de Plantas/genética , Protoplastos/citología , Células Madre/citología , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Bryopsida/crecimiento & desarrollo , Proliferación Celular , Pared Celular/genética , Eliminación de Gen , Regulación de la Expresión Génica de las Plantas , Meristema/citología , Meristema/crecimiento & desarrollo , Datos de Secuencia Molecular , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Protoplastos/metabolismo , Regeneración , Células Madre/metabolismo , Regulación hacia Arriba/genética , Cigoto/citología , Cigoto/crecimiento & desarrollo
14.
PLoS Genet ; 10(3): e1004223, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24625862

RESUMEN

Sex chromosomes turn over rapidly in some taxonomic groups, where closely related species have different sex chromosomes. Although there are many examples of sex chromosome turnover, we know little about the functional roles of sex chromosome turnover in phenotypic diversification and genomic evolution. The sympatric pair of Japanese threespine stickleback (Gasterosteus aculeatus) provides an excellent system to address these questions: the Japan Sea species has a neo-sex chromosome system resulting from a fusion between an ancestral Y chromosome and an autosome, while the sympatric Pacific Ocean species has a simple XY sex chromosome system. Furthermore, previous quantitative trait locus (QTL) mapping demonstrated that the Japan Sea neo-X chromosome contributes to phenotypic divergence and reproductive isolation between these sympatric species. To investigate the genomic basis for the accumulation of genes important for speciation on the neo-X chromosome, we conducted whole genome sequencing of males and females of both the Japan Sea and the Pacific Ocean species. No substantial degeneration has yet occurred on the neo-Y chromosome, but the nucleotide sequence of the neo-X and the neo-Y has started to diverge, particularly at regions near the fusion. The neo-sex chromosomes also harbor an excess of genes with sex-biased expression. Furthermore, genes on the neo-X chromosome showed higher non-synonymous substitution rates than autosomal genes in the Japan Sea lineage. Genomic regions of higher sequence divergence between species, genes with divergent expression between species, and QTL for inter-species phenotypic differences were found not only at the regions near the fusion site, but also at other regions along the neo-X chromosome. Neo-sex chromosomes can therefore accumulate substitutions causing species differences even in the absence of substantial neo-Y degeneration.


Asunto(s)
Variación Genética , Smegmamorpha/genética , Cromosoma X/genética , Cromosoma Y/genética , Animales , Evolución Molecular , Femenino , Japón , Masculino , Sitios de Carácter Cuantitativo/genética , Aislamiento Reproductivo , Smegmamorpha/crecimiento & desarrollo
15.
PLoS Genet ; 10(4): e1004272, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24722038

RESUMEN

Epigenetic modifications such as DNA methylation have large effects on gene expression and genome maintenance. Helicobacter pylori, a human gastric pathogen, has a large number of DNA methyltransferase genes, with different strains having unique repertoires. Previous genome comparisons suggested that these methyltransferases often change DNA sequence specificity through domain movement--the movement between and within genes of coding sequences of target recognition domains. Using single-molecule real-time sequencing technology, which detects N6-methyladenines and N4-methylcytosines with single-base resolution, we studied methylated DNA sites throughout the H. pylori genome for several closely related strains. Overall, the methylome was highly variable among closely related strains. Hypermethylated regions were found, for example, in rpoB gene for RNA polymerase. We identified DNA sequence motifs for methylation and then assigned each of them to a specific homology group of the target recognition domains in the specificity-determining genes for Type I and other restriction-modification systems. These results supported proposed mechanisms for sequence-specificity changes in DNA methyltransferases. Knocking out one of the Type I specificity genes led to transcriptome changes, which suggested its role in gene expression. These results are consistent with the concept of evolution driven by DNA methylation, in which changes in the methylome lead to changes in the transcriptome and potentially to changes in phenotype, providing targets for natural or artificial selection.


Asunto(s)
Metilación de ADN/genética , Metilasas de Modificación del ADN/genética , Genoma Bacteriano/genética , Helicobacter pylori/genética , Secuencia de Bases , Motivos de Nucleótidos/genética , Transcriptoma/genética
16.
EMBO Rep ; 15(11): 1202-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25260844

RESUMEN

Cell-to-cell communication is a fundamental mechanism for coordinating developmental and physiological events in multicellular organisms. Heterotrimeric G proteins are key molecules that transmit extracellular signals; similarly, CLAVATA signaling is a crucial regulator in plant development. Here, we show that Arabidopsis thaliana Gß mutants exhibit an enlarged stem cell region, which is similar to that of clavata mutants. Our genetic and cell biological analyses suggest that the G protein beta-subunit1 AGB1 and RPK2, one of the major CLV3 peptide hormone receptors, work synergistically in stem cell homeostasis through their physical interactions. We propose that AGB1 and RPK2 compose a signaling module to facilitate meristem development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cámbium/metabolismo , Proliferación Celular , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Arabidopsis/genética , Cámbium/fisiología , Subunidades beta de la Proteína de Unión al GTP/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal
17.
Nucleic Acids Res ; 42(Database issue): D1188-92, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24194597

RESUMEN

ppdb (http://ppdb.agr.gifu-u.ac.jp) is a plant promoter database that provides information on transcription start sites (TSSs), core promoter structure (TATA boxes, Initiators, Y Patches, GA and CA elements) and regulatory element groups (REGs) as putative and comprehensive transcriptional regulatory elements. Since the last report in this journal, the database has been updated in three areas to version 3.0. First, new genomes have been included in the database, and now ppdb provides information on Arabidopsis thaliana, rice, Physcomitrella patens and poplar. Second, new TSS tag data (34 million) from A. thaliana, determined by a high throughput sequencer, has been added to give a ∼200-fold increase in TSS data compared with version 1.0. This results in a much higher coverage of ∼27,000 A. thaliana genes and finer positioning of promoters even for genes with low expression levels. Third, microarray data-based predictions have been appended as REG annotations which inform their putative physiological roles.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genes de Plantas , Regiones Promotoras Genéticas , Arabidopsis/genética , Bryopsida/genética , Genoma de Planta , Internet , Oryza/genética , Elementos Reguladores de la Transcripción , Sitio de Iniciación de la Transcripción
18.
Development ; 139(17): 3120-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22833122

RESUMEN

Stem cells are formed at particular times and positions during the development of multicellular organisms. Whereas flowering plants form stem cells only in the sporophyte generation, non-seed plants form stem cells in both the sporophyte and gametophyte generations. Although the molecular mechanisms underlying stem cell formation in the sporophyte generation have been extensively studied, only a few transcription factors involved in the regulation of gametophyte stem cell formation have been reported. The moss Physcomitrella patens forms a hypha-like body (protonema) and a shoot-like body (gametophore) from a protonema apical cell and a gametophore apical cell, respectively. These apical cells have stem cell characteristics and are formed as side branches of differentiated protonema cells. Here, we show that four AP2-type transcription factors orthologous to Arabidopsis thaliana AINTEGUMENTA, PLETHORA and BABY BOOM (APB) are indispensable for the formation of gametophore apical cells from protonema cells. Quadruple disruption of all APB genes blocked gametophore formation, even in the presence of cytokinin, which enhances gametophore apical cell formation in the wild type. All APB genes were expressed in emerging gametophore apical cells, but not in protonema apical cells. Heat-shock induction of an APB4 transgene driven by a heat-shock promoter increased the number of gametophores. Expression of all APB genes was induced by auxin but not by cytokinin. Thus, the APB genes function synergistically with cytokinin signaling to determine the identity of the two types of stem cells.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Bryopsida/citología , Bryopsida/genética , Diferenciación Celular/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Células Madre/fisiología , Factores de Transcripción/metabolismo , Southern Blotting , Bryopsida/crecimiento & desarrollo , Análisis por Conglomerados , Biología Computacional , Citocininas/metabolismo , Células Germinativas de las Plantas/crecimiento & desarrollo , Histocitoquímica , Ácidos Indolacéticos/metabolismo , Funciones de Verosimilitud , Microscopía Fluorescente , Modelos Genéticos , Filogenia , Plásmidos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Especificidad de la Especie
19.
New Phytol ; 208(4): 1104-13, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26083273

RESUMEN

Ligand receptor-based signaling is a means of cell-to-cell communication for coordinating developmental and physiological processes in multicellular organisms. In plants, cell-producing meristems utilize this signaling to regulate their activities and ensure for proper development. Shoot and root systems share common requirements for carrying out this process; however, its molecular basis is largely unclear. It has been suggested that synthetic CLV3/EMBRYO SURROUNDING REGION (CLE) peptide shrinks the root meristem through the actions of CLAVATA2 (CLV2) and the RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2) pathway in Arabidopsis thaliana. Our genetic screening for mutations that resist CLE peptide signaling in roots determined that BAM1, which is a member of the leucine-rich repeat receptor-like kinase (LRR-RLK) family, is also involved in this pathway. BAM1 is preferentially expressed in the root tip, including the quiescent center and its surrounding stem cells. Our genetic analysis revealed that BAM1 functions together with RPK2. Using coimmunoprecipitation assay, we showed that BAM1 is capable of forming heteromeric complexes with RPK2. These findings suggest that the BAM1 and RPK2 receptors constitute a signaling pathway that modulates cell proliferation in the root meristem and that related molecules are employed in root and shoot meristems.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genes de Plantas , Raíces de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proliferación Celular , Meristema , Péptidos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
20.
J Plant Res ; 128(3): 399-405, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25801272

RESUMEN

Differentiated cells are in a non-dividing, quiescent state, but some differentiated cells can reenter the cell cycle in response to appropriate stimuli. Quiescent cells are generally arrested at the G0/G1 phase, reenter the cell cycle, and progress to the S phase to replicate their genomic DNA. On the other hand, some types of cells are arrested at the different phase and reenter the cell cycle from there. In the moss Physcomitrella patens, the differentiated leaf cells of gametophores formed in the haploid generation contain approximately 2C DNA content, and DNA synthesis is necessary for reentry into the cell cycle, which is suggested to be arrested at late S phase. Here we review various cell-division reactivation processes in which cells reenter the cell cycle from the late S phase, and discuss possible mechanisms of such unusual cell cycle reentries with special emphasis on Physcomitrella.


Asunto(s)
Bryopsida/fisiología , Ciclo Celular/fisiología , Bryopsida/genética , Diferenciación Celular/fisiología , División Celular/fisiología , Fase G1/fisiología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Fase S/fisiología , Células Madre/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA