Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 584(7821): 410-414, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32641833

RESUMEN

In metazoans, the secreted proteome participates in intercellular signalling and innate immunity, and builds the extracellular matrix scaffold around cells. Compared with the relatively constant intracellular environment, conditions for proteins in the extracellular space are harsher, and low concentrations of ATP prevent the activity of intracellular components of the protein quality-control machinery. Until now, only a few bona fide extracellular chaperones and proteases have been shown to limit the aggregation of extracellular proteins1-5. Here we performed a systematic analysis of the extracellular proteostasis network in Caenorhabditis elegans with an RNA interference screen that targets genes that encode the secreted proteome. We discovered 57 regulators of extracellular protein aggregation, including several proteins related to innate immunity. Because intracellular proteostasis is upregulated in response to pathogens6-9, we investigated whether pathogens also stimulate extracellular proteostasis. Using a pore-forming toxin to mimic a pathogenic attack, we found that C. elegans responded by increasing the expression of components of extracellular proteostasis and by limiting aggregation of extracellular proteins. The activation of extracellular proteostasis was dependent on stress-activated MAP kinase signalling. Notably, the overexpression of components of extracellular proteostasis delayed ageing and rendered worms resistant to intoxication. We propose that enhanced extracellular proteostasis contributes to systemic host defence by maintaining a functional secreted proteome and avoiding proteotoxicity.


Asunto(s)
Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiología , Espacio Extracelular/metabolismo , Agregado de Proteínas , Proteostasis , Envejecimiento/metabolismo , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Sistema de Señalización de MAP Quinasas , Agregación Patológica de Proteínas/prevención & control , Proteoma/genética , Proteoma/metabolismo , Interferencia de ARN
2.
EMBO J ; 40(20): e107159, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34523144

RESUMEN

Permeabilization of the outer mitochondrial membrane by pore-forming Bcl2 proteins is a crucial step for the induction of apoptosis. Despite a large set of data suggesting global conformational changes within pro-apoptotic Bak during pore formation, high-resolution structural details in a membrane environment remain sparse. Here, we used NMR and HDX-MS (Hydrogen deuterium exchange mass spectrometry) in lipid nanodiscs to gain important high-resolution structural insights into the conformational changes of Bak at the membrane that are dependent on a direct activation by BH3-only proteins. Furthermore, we determined the first high-resolution structure of the Bak transmembrane helix. Upon activation, α-helix 1 in the soluble domain of Bak dissociates from the protein and adopts an unfolded and dynamic potentially membrane-bound state. In line with this finding, comparative protein folding experiments with Bak and anti-apoptotic BclxL suggest that α-helix 1 in Bak is a metastable structural element contributing to its pro-apoptotic features. Consequently, mutagenesis experiments aimed at stabilizing α-helix 1 yielded Bak variants with delayed pore-forming activity. These insights will contribute to a better mechanistic understanding of Bak-mediated membrane permeabilization.


Asunto(s)
Liposomas/química , Lípidos de la Membrana/química , Proteínas Proto-Oncogénicas c-bcl-2/química , Proteína Destructora del Antagonista Homólogo bcl-2/química , Proteína bcl-X/química , Sitios de Unión , Clonación Molecular , Medición de Intercambio de Deuterio , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Cinética , Liposomas/metabolismo , Lípidos de la Membrana/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinámica , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
3.
J Biol Chem ; 299(1): 102753, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36442512

RESUMEN

Small Heat shock proteins (sHsps) are a family of molecular chaperones that bind nonnative proteins in an ATP-independent manner. Caenorhabditis elegans encodes 16 different sHsps, among them Hsp17, which is evolutionarily distinct from other sHsps in the nematode. The structure and mechanism of Hsp17 and how these may differ from other sHsps remain unclear. Here, we find that Hsp17 has a distinct expression pattern, structural organization, and chaperone function. Consistent with its presence under nonstress conditions, and in contrast to many other sHsps, we determined that Hsp17 is a mono-disperse, permanently active chaperone in vitro, which interacts with hundreds of different C. elegans proteins under physiological conditions. Additionally, our cryo-EM structure of Hsp17 reveals that in the 24-mer complex, 12 N-terminal regions are involved in its chaperone function. These flexible regions are located on the outside of the spherical oligomer, whereas the other 12 N-terminal regions are engaged in stabilizing interactions in its interior. This allows the same region in Hsp17 to perform different functions depending on the topological context. Taken together, our results reveal structural and functional features that further define the structural basis of permanently active sHsps.


Asunto(s)
Proteínas de Choque Térmico Pequeñas , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Choque Térmico Pequeñas/genética , Proteínas de Choque Térmico Pequeñas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
4.
J Am Chem Soc ; 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973199

RESUMEN

Deposition of amyloid plaques in the brains of Alzheimer's disease (AD) patients is a hallmark of the disease. AD plaques consist primarily of the beta-amyloid (Aß) peptide but can contain other factors such as lipids, proteoglycans, and chaperones. So far, it is unclear how the cellular environment modulates fibril polymorphism and how differences in fibril structure affect cell viability. The small heat-shock protein (sHSP) alpha-B-Crystallin (αBC) is abundant in brains of AD patients, and colocalizes with Aß amyloid plaques. Using solid-state NMR spectroscopy, we show that the Aß40 fibril seed structure is not replicated in the presence of the sHSP. αBC prevents the generation of a compact fibril structure and leads to the formation of a new polymorph with a dynamic N-terminus. We find that the N-terminal fuzzy coat and the stability of the C-terminal residues in the Aß40 fibril core affect the chemical and thermodynamic stability of the fibrils and influence their seeding capacity. We believe that our results yield a better understanding of how sHSP, such as αBC, that are part of the cellular environment, can affect fibril structures related to cell degeneration in amyloid diseases.

5.
EMBO Rep ; 23(5): e54096, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35357743

RESUMEN

Immunoregulation of inflammatory, infection-triggered processes in the brain constitutes a central mechanism to control devastating disease manifestations such as epilepsy. Observational studies implicate the viability of Taenia solium cysts as key factor determining severity of neurocysticercosis (NCC), the most common cause of epilepsy, especially in children, in Sub-Saharan Africa. Viable, in contrast to decaying, cysts mostly remain clinically silent by yet unknown mechanisms, potentially involving Tregs in controlling inflammation. Here, we show that glutamate dehydrogenase from viable cysts instructs tolerogenic monocytes to release IL-10 and the lipid mediator PGE2 . These act in concert, converting naive CD4+ T cells into CD127- CD25hi FoxP3+ CTLA-4+ Tregs, through the G protein-coupled receptors EP2 and EP4 and the IL-10 receptor. Moreover, while viable cyst products strongly upregulate IL-10 and PGE2 transcription in microglia, intravesicular fluid, released during cyst decay, induces pro-inflammatory microglia and TGF-ß as potential drivers of epilepsy. Inhibition of PGE2 synthesis and IL-10 signaling prevents Treg induction by viable cyst products. Harnessing the PGE2 -IL-10 axis and targeting TGF-ß signaling may offer an important therapeutic strategy in inflammatory epilepsy and NCC.


Asunto(s)
Quistes , Dinoprostona , Niño , Dinoprostona/farmacología , Humanos , Interleucina-10 , Monocitos , Oxidorreductasas , Linfocitos T Reguladores
6.
Mol Cell ; 58(6): 1067-78, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26009280

RESUMEN

Small heat shock proteins (sHsps) are ubiquitous molecular chaperones that prevent the aggregation of unfolding proteins during proteotoxic stress. In Caenorhabditis elegans, Sip1 is the only sHsp exclusively expressed in oocytes and embryos. Here, we demonstrate that Sip1 is essential for heat shock survival of reproducing adults and embryos. X-ray crystallography and electron microscopy revealed that Sip1 exists in a range of well-defined globular assemblies consisting of two half-spheres, each made of dimeric "spokes." Strikingly, the oligomeric distribution of Sip1 as well as its chaperone activity depend on pH, with a trend toward smaller species and higher activity at acidic conditions such as present in nematode eggs. The analysis of the interactome shows that Sip1 has a specific substrate spectrum including proteins that are essential for embryo development.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas de Choque Térmico Pequeñas/química , Chaperonas Moleculares/química , Conformación Proteica , Secuencia de Aminoácidos , Animales , Western Blotting , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/clasificación , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Proteínas de Choque Térmico Pequeñas/genética , Proteínas de Choque Térmico Pequeñas/metabolismo , Concentración de Iones de Hidrógeno , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Mutación , Filogenia , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Temperatura
7.
J Biol Chem ; 295(1): 158-169, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31767683

RESUMEN

Small heat-shock proteins (sHsps) compose the most widespread family of molecular chaperones. The human genome encodes 10 different sHsps (HspB1-10). It has been shown that HspB1 (Hsp27), HspB5 (αB-crystallin), and HspB6 (Hsp20) can form hetero-oligomers in vivo However, the impact of hetero-oligomerization on their structure and chaperone mechanism remains enigmatic. Here, we analyzed hetero-oligomer formation in human cells and in vitro using purified proteins. Our results show that the effect of hetero-oligomer formation on the composition of the sHsp ensembles and their chaperone activities depends strongly on the respective sHsps involved. We observed that hetero-oligomer formation between HspB1 and HspB5 leads to an ensemble that is dominated by species larger than the individual homo-oligomers. In contrast, the interaction of dimeric HspB6 with either HspB1 or HspB5 oligomers shifted the ensemble toward smaller oligomers. We noted that the larger HspB1-HspB5 hetero-oligomers are less active and that HspB6 activates HspB5 by dissociation to smaller oligomer complexes. The chaperone activity of HspB1-HspB6 hetero-oligomers, however, was modulated in a substrate-specific manner, presumably due to the specific enrichment of an HspB1-HspB6 heterodimer. These heterodimeric species may allow the tuning of the chaperone properties toward specific substrates. We conclude that sHsp hetero-oligomerization exerts distinct regulatory effects depending on the sHsps involved.


Asunto(s)
Proteínas de Choque Térmico Pequeñas/metabolismo , Multimerización de Proteína , Células CACO-2 , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Células MCF-7
8.
J Biol Chem ; 294(6): 2121-2132, 2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30385502

RESUMEN

Small heat shock proteins (sHsps) are a ubiquitous and ancient family of ATP-independent molecular chaperones. A key characteristic of sHsps is that they exist in ensembles of iso-energetic oligomeric species differing in size. This property arises from a unique mode of assembly involving several parts of the subunits in a flexible manner. Current evidence suggests that smaller oligomers are more active chaperones. Thus, a shift in the equilibrium of the sHsp ensemble allows regulating the chaperone activity. Different mechanisms have been identified that reversibly change the oligomer equilibrium. The promiscuous interaction with non-native proteins generates complexes that can form aggregate-like structures from which native proteins are restored by ATP-dependent chaperones such as Hsp70 family members. In recent years, this basic paradigm has been expanded, and new roles and new cofactors, as well as variations in structure and regulation of sHsps, have emerged.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Pliegue de Proteína , Multimerización de Proteína , Animales , Proteínas HSP70 de Choque Térmico/genética , Humanos , Unión Proteica , Estructura Cuaternaria de Proteína
9.
J Biol Chem ; 294(25): 9985-9994, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31097540

RESUMEN

Heat shock protein family B (small) member 7 (HSPB7) is a unique, relatively unexplored member within the family of human small heat shock proteins (HSPBs). Unlike most HSPB family members, HSPB7 does not oligomerize and so far has not been shown to associate with any other member of the HSPB family. Intriguingly, it was found to be the most potent member within the HSPB family to prevent aggregation of proteins with expanded polyglutamine (polyQ) stretches. How HSPB7 suppresses polyQ aggregation has remained elusive so far. Here, using several experimental strategies, including in vitro aggregation assay, immunoblotting and fluorescence approaches, we show that the polyQ aggregation-inhibiting activity of HSPB7 is fully dependent on its flexible N-terminal domain (NTD). We observed that the NTD of HSPB7 is both required for association with and inhibition of polyQ aggregation. Remarkably, replacing the NTD of HSPB1, which itself cannot suppress polyQ aggregation, with the NTD of HSPB7 resulted in a hybrid protein that gained anti-polyQ aggregation activity. The hybrid NTDHSPB7-HSPB1 protein displayed a reduction in oligomer size and, unlike WT HSPB1, associated with polyQ. However, experiments with phospho-mimicking HSPB1 mutants revealed that de-oligomerization of HSPB1 alone does not suffice to gain polyQ aggregation-inhibiting activity. Together, our results reveal that the NTD of HSPB7 is both necessary and sufficient to bind to and suppress the aggregation of polyQ-containing proteins.


Asunto(s)
Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Péptidos/química , Agregado de Proteínas , Proteínas de Choque Térmico HSP27/química , Humanos , Péptidos/metabolismo , Unión Proteica , Proteolisis
10.
J Org Chem ; 85(2): 664-673, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31746205

RESUMEN

Genome sequencing and bioinformatic analysis have identified numerous cryptic gene clusters that have the potential to produce novel natural products. Within this work, we identified a cryptic type II PKS gene cluster (skt) from Streptomyces sp. Tü 6314. Facilitated by linear plus linear homologous recombination-mediated recombineering (LLHR), we directly cloned the skt gene cluster using the Streptomyces site-specific integration vector pSET152. Direct cloning allowed for rapid heterologous expression in Streptomyces coelicolor, leading to the identification and structural characterization of six polyketides (three known compounds and new streptoketides), four of which exhibit anti-HIV activities. Our study shows that the pSET152 vector can be directly used for LLHR, expanding the Rec/ET direct cloning toolbox and providing the possibility for rapid heterologous expression of gene clusters from Streptomyces.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Familia de Multigenes , Sintasas Poliquetidas/genética , Policétidos/aislamiento & purificación , Streptomyces/enzimología , Animales , Antivirales/química , Antivirales/aislamiento & purificación , Antivirales/farmacología , Línea Celular , Cromatografía Líquida de Alta Presión/métodos , Clonación Molecular , Pruebas de Sensibilidad Microbiana , Policétidos/química , Policétidos/farmacología , Análisis Espectral/métodos , Streptomyces/genética
11.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751672

RESUMEN

The proteostasis network allows organisms to support and regulate the life cycle of proteins. Especially regarding stress, molecular chaperones represent the main players within this network. Small heat shock proteins (sHsps) are a diverse family of ATP-independent molecular chaperones acting as the first line of defense in many stress situations. Thereby, the promiscuous interaction of sHsps with substrate proteins results in complexes from which the substrates can be refolded by ATP-dependent chaperones. Particularly in vertebrates, sHsps are linked to a broad variety of diseases and are needed to maintain the refractive index of the eye lens. A striking key characteristic of sHsps is their existence in ensembles of oligomers with varying numbers of subunits. The respective dynamics of these molecules allow the exchange of subunits and the formation of hetero-oligomers. Additionally, these dynamics are closely linked to the chaperone activity of sHsps. In current models a shift in the equilibrium of the sHsp ensemble allows regulation of the chaperone activity, whereby smaller oligomers are commonly the more active species. Different triggers reversibly change the oligomer equilibrium and regulate the activity of sHsps. However, a finite availability of high-resolution structures of sHsps still limits a detailed mechanistic understanding of their dynamics and the correlating recognition of substrate proteins. Here we summarize recent advances in understanding the structural and functional relationships of human sHsps with a focus on the eye-lens αA- and αB-crystallins.


Asunto(s)
Proteínas de Choque Térmico Pequeñas/genética , Proteostasis/genética , Cadena A de alfa-Cristalina/genética , Cadena B de alfa-Cristalina/genética , Adenosina Trifosfato/genética , Cristalinas/genética , Humanos , Chaperonas Moleculares/genética
13.
J Biol Chem ; 292(2): 672-684, 2017 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-27909051

RESUMEN

Small heat shock proteins (sHsps) are a ubiquitous family of molecular chaperones that suppress the unspecific aggregation of miscellaneous proteins. Multicellular organisms contain a large number of different sHsps, raising questions as to whether they function redundantly or are specialized in terms of substrates and mechanism. To gain insight into this issue, we undertook a comparative analysis of the eight major human sHsps on the aggregation of both model proteins and cytosolic lysates under standardized conditions. We discovered that sHsps, which form large oligomers (HspB1/Hsp27, HspB3, HspB4/αA-crystallin, and HspB5/αB-crystallin) are promiscuous chaperones, whereas the chaperone activity of the other sHsps is more substrate-dependent. However, all human sHsps analyzed except HspB7 suppressed the aggregation of cytosolic proteins of HEK293 cells. We identified ∼1100 heat-sensitive HEK293 proteins, 12% of which could be isolated in complexes with sHsps. Analysis of their biochemical properties revealed that most of the sHsp substrates have a molecular mass from 50 to 100 kDa and a slightly acidic pI (5.4-6.8). The potency of the sHsps to suppress aggregation of model substrates is correlated with their ability to form stable substrate complexes; especially HspB1 and HspB5, but also B3, bind tightly to a variety of proteins, whereas fewer substrates were detected in complex with the other sHsps, although these were also efficient in preventing the aggregation of cytosolic proteins.


Asunto(s)
Proteínas de Choque Térmico HSP27/química , Proteínas de Choque Térmico HSP27/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP27/genética , Humanos , Unión Proteica , Especificidad por Sustrato/fisiología
14.
Mol Cell ; 40(2): 253-66, 2010 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-20965420

RESUMEN

Organisms must survive a variety of stressful conditions, including sudden temperature increases that damage important cellular structures and interfere with essential functions. In response to heat stress, cells activate an ancient signaling pathway leading to the transient expression of heat shock or heat stress proteins (Hsps). Hsps exhibit sophisticated protection mechanisms, and the most conserved Hsps are molecular chaperones that prevent the formation of nonspecific protein aggregates and assist proteins in the acquisition of their native structures. In this Review, we summarize the concepts of the protective Hsp network.


Asunto(s)
Células Eucariotas/metabolismo , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/fisiología , Transducción de Señal , Animales , Citoesqueleto/metabolismo , Proteínas de Choque Térmico/clasificación , Humanos , Modelos Biológicos , Orgánulos/metabolismo
15.
Mol Cell ; 39(4): 507-20, 2010 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-20797624

RESUMEN

Hsp12 of S. cerevisiae is upregulated several 100-fold in response to stress. Our phenotypic analysis showed that this protein is important for survival of a variety of stress conditions, including high temperature. In the absence of Hsp12, we observed changes in cell morphology under stress conditions. Surprisingly, in the cell, Hsp12 exists both as a soluble cytosolic protein and associated to the plasma membrane. The in vitro analysis revealed that Hsp12, unlike all other Hsps studied so far, is completely unfolded; however, in the presence of certain lipids, it adopts a helical structure. The presence of Hsp12 does not alter the overall lipid composition of the plasma membrane but increases membrane stability.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Choque Térmico/genética , Fluidez de la Membrana , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Membrana Celular/ultraestructura , Citosol/metabolismo , Regulación Fúngica de la Expresión Génica , Genotipo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Lípidos de la Membrana/metabolismo , Presión Osmótica , Estrés Oxidativo , Fenotipo , Pliegue de Proteína , Estructura Secundaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia , Estrés Fisiológico , Relación Estructura-Actividad
16.
Biochim Biophys Acta ; 1860(1 Pt B): 149-66, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26116912

RESUMEN

BACKGROUND: The two α-crystallins (αA- and αB-crystallin) are major components of our eye lenses. Their key function there is to preserve lens transparency which is a challenging task as the protein turnover in the lens is low necessitating the stability and longevity of the constituent proteins. α-Crystallins are members of the small heat shock protein family. αB-crystallin is also expressed in other cell types. SCOPE OF THE REVIEW: The review summarizes the current concepts on the polydisperse structure of the α-crystallin oligomer and its chaperone function with a focus on the inherent complexity and highlighting gaps between in vitro and in vivo studies. MAJOR CONCLUSIONS: Both α-crystallins protect proteins from irreversible aggregation in a promiscuous manner. In maintaining eye lens transparency, they reduce the formation of light scattering particles and balance the interactions between lens crystallins. Important for these functions is their structural dynamics and heterogeneity as well as the regulation of these processes which we are beginning to understand. However, currently, it still remains elusive to which extent the in vitro observed properties of α-crystallins reflect the highly crowded situation in the lens. GENERAL SIGNIFICANCE: Since α-crystallins play an important role in preventing cataract in the eye lens and in the development of diverse diseases, understanding their mechanism and substrate spectra is of importance. To bridge the gap between the concepts established in vitro and the in vivo function of α-crystallins, the joining of forces between different scientific disciplines and the combination of diverse techniques in hybrid approaches are necessary. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.


Asunto(s)
Catarata/metabolismo , Cristalino/química , Cristalino/metabolismo , alfa-Cristalinas/química , alfa-Cristalinas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Catarata/patología , Humanos , Técnicas In Vitro , Cristalino/ultraestructura , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , alfa-Cristalinas/ultraestructura
17.
Biochem J ; 473(20): 3683-3704, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27514716

RESUMEN

Formation of fibrils of the amyloid-ß peptide (Aß) is suggested to play a central role in neurodegeneration in Alzheimer's disease (AD), for which no effective treatment exists. The BRICHOS domain is a part of several disease-related proproteins, the most studied ones being Bri2 associated with familial dementia and prosurfactant protein C (proSP-C) associated with lung amyloid. BRICHOS from proSP-C has been found to be an efficient inhibitor of Aß aggregation and toxicity, but its lung-specific expression makes it unsuited to target in AD. Bri2 is expressed in the brain, affects processing of Aß precursor protein, and increased levels of Bri2 are found in AD brain, but the specific role of its BRICHOS domain has not been studied in vivo Here, we find that transgenic expression of the Bri2 BRICHOS domain in the Drosophila central nervous system (CNS) or eyes efficiently inhibits Aß42 toxicity. In the presence of Bri2 BRICHOS, Aß42 is diffusely distributed throughout the mushroom bodies, a brain region involved in learning and memory, whereas Aß42 expressed alone or together with proSP-C BRICHOS forms punctuate deposits outside the mushroom bodies. Recombinant Bri2 BRICHOS domain efficiently prevents Aß42-induced reduction in γ-oscillations in hippocampal slices. Finally, Bri2 BRICHOS inhibits several steps in the Aß42 fibrillation pathway and prevents aggregation of heat-denatured proteins, indicating that it is a more versatile chaperone than proSP-C BRICHOS. These findings suggest that Bri2 BRICHOS can be a physiologically relevant chaperone for Aß in the CNS and needs to be further investigated for its potential in AD treatment.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Demencia/metabolismo , Proteínas de Drosophila/metabolismo , Chaperonas Moleculares/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/ultraestructura , Sistema Nervioso Central/metabolismo , Drosophila , Electrofisiología , Femenino , Hipocampo/metabolismo , Hipocampo/ultraestructura , Humanos , Inmunohistoquímica , Técnicas In Vitro , Cinética , Locomoción/genética , Locomoción/fisiología , Masculino , Ratones , Microscopía Electrónica de Transmisión , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
Chemistry ; 22(41): 14576-84, 2016 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-27539088

RESUMEN

C-H bond activation of 2-methoxyethylamino-bis(phenolate)-yttrium catalysts allowed the synthesis of BAB block copolymers comprised of 2-vinylpyridine (2VP; monomer A) and diethylvinylphosphonate (DEVP; monomer B) as the A and B blocks, respectively, by rare-earth-metal-mediated group-transfer polymerization (REM-GTP). The inherent multi-stimuli-responsive character and drug-loading and -release capabilities were observed to be dependent on the chain length and monomer ratios. Cytotoxicity assays revealed the biocompatibility and nontoxic nature of the obtained micelles toward ovarian cancer (HeLa) cells. The BAB block copolymers effectively encapsulated, transported, and released doxorubicin (DOX) within HeLa cells. REM-GTP enables access to previously unattainable vinylphosphonate copolymer structures, and thereby unlocks their full potential as nanocarriers for stimuli-responsive drug delivery in HeLa cells. The self-evident consequence is the application of these new micelles as potent drug-delivery vehicles with reduced side effects in future cancer therapies.


Asunto(s)
Antineoplásicos/administración & dosificación , Portadores de Fármacos/síntesis química , Nanopartículas/química , Antineoplásicos/química , Catálisis , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Liberación de Fármacos , Células HeLa , Humanos , Micelas , Estructura Molecular , Tamaño de la Partícula , Polietilenglicoles/química , Polimerizacion , Propiedades de Superficie , Itrio/química
19.
Microb Cell Fact ; 15: 86, 2016 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-27216162

RESUMEN

BACKGROUND: De novo production of multi-hydroxylated diterpenoids is challenging due to the lack of efficient redox systems. RESULTS: In this study a new reductase/ferredoxin system from Streptomyces afghaniensis (AfR·Afx) was identified, which allowed the Escherichia coli-based production of the trihydroxylated diterpene cyclooctatin, a potent inhibitor of human lysophospholipase. This production system provides a 43-fold increase in cyclooctatin yield (15 mg/L) compared to the native producer. AfR·Afx is superior in activating the cylcooctatin-specific class I P450s CotB3/CotB4 compared to the conventional Pseudomonas putida derived PdR·Pdx model. To enhance the activity of the PdR·Pdx system, the molecular basis for these activity differences, was examined by molecular engineering. CONCLUSION: We demonstrate that redox system engineering can boost and harmonize the catalytic efficiency of class I hydroxylase enzyme cascades. Enhancing CotB3/CotB4 activities also provided for identification of CotB3 substrate promiscuity and sinularcasbane D production, a functionalized diterpenoid originally isolated from the soft coral Sinularia sp.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Diterpenos/metabolismo , Escherichia coli/genética , Proteínas Bacterianas/química , Sitios de Unión , Diterpenos/química , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Ferredoxinas/química , Ferredoxinas/genética , Ferredoxinas/metabolismo , Enlace de Hidrógeno , Hidroxilación , Simulación del Acoplamiento Molecular , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Estructura Terciaria de Proteína , Streptomyces/enzimología , Streptomyces/genética , Especificidad por Sustrato
20.
Expert Rev Proteomics ; 12(3): 295-308, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25915440

RESUMEN

Small heat shock proteins (sHsps) are ubiquitous molecular chaperones that are implicated in a variety of diseases. Upon stress, they stabilize unfolding proteins and prevent them from aggregating. However, under physiological conditions without severe stress, some sHsps interact with other proteins. In a perspective view, their ability to bind specific client proteins might allow them to fine-tune the availability of the client for other, client-dependent cellular processes. Additionally, some sHsps seem to interact with specific co-chaperones. These co-chaperones are usually part of large protein machineries that are functionally modulated upon sHsps interaction. Finally, secreted human sHsps seem to interact with receptor proteins, potentially as signal molecules transmitting the stress status from one cell to another. This review focuses on the mechanistic description of these different binding modes for human sHsps and how this might help to understand and modulate the function of sHsps in the context of disease.


Asunto(s)
Proteínas de Choque Térmico Pequeñas/metabolismo , Estrés Fisiológico , Animales , Medicina Clínica , Proteínas de Choque Térmico Pequeñas/química , Humanos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA