RESUMEN
PURPOSE: In this study, two main research objectives were examined: (1) the cytotoxic and anticancer activities of the aqueous methanol extract from Acacia nilotica flowers on three human cancer cells, namely lung A549, breast MCF-7, and leukemia THP-1 cells, and (2) the genotoxic effects of A. nilotica extract and its influence on DNA damage induced by N-methyl-N-nitrosourea (MNU) in mice. METHODS: Mice were orally treated with A. nilotica extract (200, 500, and 800 mg/kg for 4 days) with or without MNU (80 mg/kg intraperitoneally for 24 h). RESULTS: In vitro experiments showed that A549 cells were the most sensitive to A. nilotica extract among the tested cell lines. A. nilotica extract inhibited A549 cell proliferation by blocking the cell cycle at the G2/M phase and accumulating apoptotic cells in the sub-G0/G1 phase in A549 cells. In vivo experiments showed that MNU induced positive and negative genotoxicity in bone marrow cells and spermatocytes, respectively. Negative genotoxicity was observed in A. nilotica extract-treated groups only. However, A. nilotica extract (800 mg/kg) remarkably increased comet tail formation in bone marrow cells. Unexpectedly, the absence of antigenotoxicity was observed in three cotreated groups with A. nilotica extract and MNU compared with the MNU-treated group. Astonishingly, cotreatment with MNU and A. nilotica extract at a dose above 200 mg/kg remarkably increased micronucleus and comet tail formation in bone marrow cells compared with the MNU-treated group. CONCLUSIONS: A. nilotica extract possessed anticancer activity with relative genotoxic effects at high doses.
Asunto(s)
Acacia , Antineoplásicos , Animales , Daño del ADN , Flores , Humanos , Masculino , Metilnitrosourea/toxicidad , Ratones , Extractos Vegetales/farmacologíaRESUMEN
Black mulberry (Morus nigra) leaves is broadly used in traditional medicine worldwide. However, there are no scientific reports regarding testicular protection, hepato-and nephroprotective activities of M. nigra leaves. The present investigation was assessed the protective mechanism by which methanol extract from M. nigra leaves suppressed the damaging effects induced by paracetamol (APAP) in different mouse tissues. Male mice were orally given APAP (500 mg/kg) with or without M. nigra extract (150, 300, and 500 mg/kg) for four consecutive days. The results showed that crude extract possessed potent antioxidant activity (EC50 = 42.97 µg extract/mL) due to the presence of a high amount of polyphenol and flavonoid compounds. Gallic acid, chlorogenic acid, catechin, and rutin were isolated from the n-butanol fraction of M. nigra extract. Unexpectedly, oral administration of APAP did not induce chromosomal aberrations in mouse bone marrow; however, it produced damaging effects on testis, liver, and kidney tissues. Interestingly, M. nigra extract suppressed APAP-induced genotoxicity by lowering meiotic chromosomal aberrations in spermatocytes, morphological sperm abnormalities, and % DNA damage in comet tail in the liver and kidney tissues. The altered levels of glutathione S transferase activity, lipid peroxidation, liver, and kidney functions were significantly reversed when M. nigra was given to APAP group. The restoring of the histo-architectural distortions and decreasing over-expression of p53 protein as determined by immunohistochemistry in the liver, kidney, and testis sections were strengthened the protective activity of M. nigra extract. Conclusion, the bioactive components in the leaves of black mulberry appear to be a good candidate for genetic protection, treatment of oxidative stress-induced organotoxicity.
Asunto(s)
Acetaminofén/toxicidad , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Morus/química , Extractos Vegetales/farmacología , Testículo/efectos de los fármacos , Analgésicos no Narcóticos/toxicidad , Animales , Antioxidantes/farmacología , Aberraciones Cromosómicas/inducido químicamente , Aberraciones Cromosómicas/efectos de los fármacos , Ensayo Cometa , Daño del ADN/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Fitoterapia/métodos , Hojas de la Planta/química , Testículo/metabolismo , Testículo/patologíaRESUMEN
Guava (Psidium guajava) leaves are commonly used in the treatment of diseases. They are considered a waste product resulting from guava cultivation. The leaves are very rich in essential oils (EOs) and volatiles. This work represents the detailed comparative chemical profiles of EOs derived from the leaves of six guava varieties cultivated in Egypt, including Red Malaysian (RM), El-Qanater (EQ), White Indian (WI), Early (E), El-Sabahya El-Gedida (ESEG), and Red Indian (RI), cultivated on the same farm in Egypt. The EOs from the leaves of guava varieties were extracted by hydro-distillation and analyzed with GC-MS. The EOs were categorized in a holistic manner using chemometric tools. The hydro-distillation of the samples yielded 0.11-0.48% of the EO (v/w). The GC-MS analysis of the extracted EOs showed the presence of 38 identified compounds from the six varieties. The sesquiterpene compounds were recorded as main compounds of E, EQ, ESEG, RI, and WI varieties, while the RM variety attained the highest content of monoterpenes (56.87%). The sesquiterpenes, ß-caryophyllene (11.21-43.20%), and globulol (76.17-26.42%) were detected as the major compounds of all studied guava varieties, while trans-nerolidol (0.53-10.14) was reported as a plentiful compound in all of the varieties except for the RM variety. A high concentration of D-limonene was detected in the EOs of the RM (33.96%), WI (27.04%), and ESEG (9.10%) varieties. These major compounds were consistent with those reported for other genotypes from different countries. Overall, the EOs' composition and the chemometric analysis revealed substantial variations among the studied varieties that might be ascribed to genetic variability, considering the stability of the cultivation and climate conditions. Therefore, this chemical polymorphism of the studied varieties supports that these varieties could be considered as genotypes of P. guajava. It is worth mentioning here that the EOs, derived from leaves considered to be agricultural waste, of the studied varieties showed that they are rich in biologically active compounds, particularly ß-caryophyllene, trans-nerolidol, globulol, and D-limonene. These could be considered as added value for pharmacological and industrial applications. Further study is recommended to confirm the chemical variations of the studied varieties at a molecular level, as well as their possible medicinal and industrial uses.
Asunto(s)
Aceites Volátiles/análisis , Aceites de Plantas/análisis , Psidium/química , Cromatografía de Gases y Espectrometría de Masas , Monoterpenos/análisis , Hojas de la Planta/química , Sesquiterpenos/análisisRESUMEN
Three previously undescribed cardenolides, acovenosigenin A 3-O-α-L-acofriopyranoside (1: ), 14-anhydroacovenosigenin A 3-O-[ß-D-glucopyranosyl-(1â³â4')-O-α-L-acofriopyranoside] (2: ), and 14-anhydroacovenosigenin A 3-O-[ß-D-glucopyranosyl-(1â³â4')-O-α-L-acovenopyranoside] (3: ), together with the two already known ones, 14-anhydrodigitoxigenin 3-O-ß-D-glucopyranoside (4: ) and acospectoside A (5: ), were isolated from the leaves of Acokanthera oblongifolia. The influence of cardenolides 1: â-â3: and acovenoside A (found in the Acokanthera genus) on three cancer cell lines (HT29, HCT116, and AGS) was also investigated. The most promising results, in comparison with oxaliplatin, were obtained for compound 1: , which was found to be highly cytotoxic for all tested cell lines, HT29 (IC50 = 63.49 nM), HCT116 (IC50 = 67.35 nM), and AGS (IC50 = 80.92 nM). Unfortunately, 1: also showed similar toxicity towards normal lymphocytes (IC50 = 98.03 nM).
Asunto(s)
Apocynaceae/química , Cardenólidos/aislamiento & purificación , Citotoxinas/aislamiento & purificación , Hojas de la Planta/química , Cardenólidos/farmacología , Línea Celular Tumoral/efectos de los fármacos , Citotoxinas/farmacología , Humanos , Linfocitos/efectos de los fármacosRESUMEN
CONTEXT: Cajanus cajan L. (Fabaceae), a food crop, is widely used in traditional medicine. OBJECTIVES: The phytochemical composition of C. cajan seeds and evaluation of the anti-inflammatory, immunomodulatory, antinociceptive, and antioxidant activities were studied. MATERIALS AND METHODS: Unsaponifiable matter and fatty acids were analyzed by GC and GC/MS. The n-butanol fraction was chromatographed on polyamide column. The anti-inflammatory activity of hexane extract (200 and 400 mg/kg, p.o.) was evaluated using the carrageenan-induced rat paw edema at 1, 2, and 3 h. The serum tumor necrosis factor-α, interleukin-6, and immunoglobulin G levels were detected by ELISA. The hexane extract antinociceptive activity was determined by adopting the writhing test in mice. DPPH radical scavenging, total reduction capability, and inhibition of lipid peroxidation of butanol fraction were evaluated. RESULTS AND CONCLUSION: Twenty-one unsaponifiable compounds (mainly phytol, 2,6-di-(t-butyl)-4-hydroxy-4-methyl-2,5-cyclohexadiene-1-one, ß-sitosterol, stigmasterol, and campesterol), as well as 12 fatty acids (primarily 9,12-octadecadienoic and palmitic acids) were identified in hexane extract of C. cajan seeds. n-BuOH fraction contains quercetin-3-O-ß-d-glucopyranoside, orientin, vitexin, quercetin, luteolin, apigenin, and isorhamnetin. For the first time, quercetin-3-O-ß-d-glucopyranoside is isolated from C. cajan plant. The hexane extract (200 and 400 mg/kg) inhibited carrageenan-induced inflammation by 85 and 95%, respectively, 3 h post-carrageenan challenge. This was accompanied by an 11 and 20%, 8 and 13%, respectively, decrease of TNF-α and IL-6, as well as significant decrease in IgG serum levels. Moreover, hexane extract (200 and 400 mg/kg) decreased the number of writhings by 61 and 83%, respectively. The butanol fraction showed DPPH radical scavenging (inhibitory concentration (IC50) value: 9.07 µg/ml).
Asunto(s)
Analgésicos/farmacología , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Factores Inmunológicos/farmacología , Inflamación/prevención & control , Dolor Nociceptivo/prevención & control , Extractos Vegetales/farmacología , Analgésicos/aislamiento & purificación , Animales , Antiinflamatorios/aislamiento & purificación , Antioxidantes/aislamiento & purificación , Conducta Animal/efectos de los fármacos , Compuestos de Bifenilo/química , Butanoles/química , Cajanus/química , Carragenina , Citocinas/sangre , Modelos Animales de Enfermedad , Egipto , Femenino , Cromatografía de Gases y Espectrometría de Masas , Hexanos/química , Factores Inmunológicos/aislamiento & purificación , Inflamación/sangre , Inflamación/inducido químicamente , Mediadores de Inflamación/sangre , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratones , Dolor Nociceptivo/etiología , Dolor Nociceptivo/psicología , Fitoterapia , Picratos/química , Extractos Vegetales/aislamiento & purificación , Plantas Medicinales , Ratas , Semillas , Solventes/química , Factores de TiempoRESUMEN
Sonchus oleraceus L. is a leafy vegetable that is usually consumed in the area of the Mediterranean and is a frequently used traditional herb to treat a variety of ailments. Previous studies deduced the potent antioxidant and cytotoxic functions of the different extracts and isolated compounds from S. oleraceus. The current study represents the first instance of chemical profiling and bioactivities of the extracted essential oil (EO) of S. oleraceus. The present investigation set out to identify the chemical components of this EO by means of Gas Chromatography with Flame Ionization Detector (GC-FID) and Gas Chromatography-Mass Spectrometry (G004-MS) techniques; assess the oil's antioxidant potencies through 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate (ABTS) assays; and evaluate the oil's cytotoxic impact against HepG2 cancer cell lines. The GC-MS chemical profiling revealed the identification of 23 components representing 97.43% of the total oil mass within abundant cyclic ketones (20.15%), nonterpenoidial hydrocarbons (28.77%), and sesquiterpenes (42.19%). The main components were n-nonadecane (28.77%), trans-caryophyllene (23.73%), trans-methyl dihydrojasmonate (19.55%), and cis-cadina-1,4-diene (9.44%). In a dose-dependent manner, this EO demonstrated antioxidant capacities on DPPH and ABTS, with IC50 values of 609.35 and 804.16 µg/mL, respectively, compared to ascorbic acid. Using doxorubicin as a reference therapy, the MTT assay findings revealed that this oil had remarkable inhibitory effects on the proliferation of HepG2 cancer cell lines, with an IC50 of 136.02 µg/mL. More studies were recommended for further investigation of new biological roles for this oil and its main components, along with the construction of action mechanisms based on chemical components.
RESUMEN
Worldwide, Severe acute respiratory syndrome Coronavirus (SARS-CoV-2) pandemic crisis, causing many morbidities, mortality, and devastating impact on economies, so the current outbreak of the CoV-2 is a major concern for global health. The infection spread quickly and caused chaos in many countries around the world. The slow discovery of CoV-2 and the limited treatment options are among the main challenges. Therefore, the development of a drug that is safe and effective against CoV-2 is urgently needed. The present overview briefly summarizes CoV-2 drug targets ex: RNA-dependent RNA polymerase (RdRp), papain-like protease (PLpro), 3-chymotrypsin-like protease (3CLpro), transmembrane serine protease enzymes (TMPRSS2), angiotensin-converting enzyme 2 (ACE2), structural protein (N, S, E, and M), and virulence factors (NSP1, ORF7a, and NSP3c) for which drug design perspective can be considered. In addition, summarize all anti-COVID-19 medicinal plants and phytocompounds and their mechanisms of action to be used as a guide for further studies.
RESUMEN
Gastric ulcer and hepatotoxicity due to irrational drug overuse are two of the most serious conditions associated with inflammation and oxidative stress that affect the digestive system. This study aimed to experimentally evaluate the hepatoprotective/gastroprotective effects of aqueous and butanol citrus peel extracts and hesperidin in rat models of ulcer and hepatotoxicity. Acute toxicity study was performed for determining the safe dose of citrus extracts to analyze efficacy. In the experiments on hepatoprotective and gastroprotective effects, rats were classified into nine groups in each experiment: (1) negative control, (2) positive control hepatotoxic model with paracetamol (640 mg/kg)/gastric ulcer model:ethanol 70% (1 ml), (3)reference hepatoprotective:silymarin (25 mg/kg)/gastroprotective:ranitidine (50 mg/kg), and (4-9) groups treated for 2 weeks before induction of each disease with either citrus aqueous or butanol extracts or hesperidin (125-250 mg/kg). Drugs, ethanol, or tested compounds were administered orally. The levels of biochemical parameters, such as AST, ALT, NO, MDA, CRP, and ILß6, were significantly reduced, but CAT level was increased. Postmortem examination of liver and stomach tissues of treated animals revealed marked improvement compared with positive control animals. Hesperidin exerted the best hepatoprotective, antioxidant, anti-inflammatory, and gastroprotective effects, followed by butanol and then aqueous citrus peel extracts.
RESUMEN
[This corrects the article DOI: 10.1016/j.heliyon.2022.e09979.].
RESUMEN
OBJECTIVE: Lavender oil is of a great economic importance. It has many biological and pharmacological activities. The present study aimed to identify the chemical constituents of the essential oil of Lavandula officinalis (LAEO) by using GC/MS analysis. Its genotoxicity, anti-genotoxicity and histopathological activities against the chemotherapeutic drug cyclophosphamide (CP) was investigated. The study also evaluated its anticancer activities against six human cancer cell lines: hepatocellular carcinoma (HepG2), Prostate (PC3), Lung carcinoma (A549), Skin cancer (A431), Colon cancer (HCT116) and Breast cancer (MCF7). METHODS: The genotoxicity was determined using: micronucleus, chromosomal aberration, and comet assays. The histopathological study included liver. The examined groups were control negative, control plant, control positive (CP), and 3 combined groups received LAEO at different concentrations plus CP. RESULTS: GC/MS analysis recorded 16 components. The principals were: linalool and linalyl acetate. The results indicated the safety of LAEO. It also attenuates genotoxicity and deleterious histopathological effects of CP in a dose-dependent manner. LAEO has a highly cytotoxic effect on HepG2 and A549 cell lines with 100% death at 100µg/ ml with IC50 67.8 and 12 µg/ ml, respectively. Its activity on other cell lines was weak. CONCLUSION: The essential oil of Lavandula officinalis has anticancer and anti-mutagenic effect.
Asunto(s)
Antineoplásicos , Lavandula , Aceites Volátiles , Cromatografía de Gases y Espectrometría de Masas , Humanos , Masculino , Mutágenos , Aceites Volátiles/farmacologíaRESUMEN
Musa acuminata (MA) is a popular fruit peels in the world. Non-food parts of the plant have been investigated for their antioxidant and anti-ulcerative colitis activity. Metabolomic approaches were found to be informative as a screening tool. It discovered different metabolites depending on statistical analysis. The antioxidant activity content was measured by colorimetric method. Seventy six investigated metabolites were observed. The identities of some of these markers were confirmed based on their MS2 fragmentation and NMR spectroscopy. These include: cinnamic acid and its dimer 2-hydroxy-4-(4-methoxyphenyl)-1H-phenalen-1-one beside; gallic acid and flavonoids; quercetin, quercetin-3-O-ß-D-glucoside, luteolin-7-O-ß-D-glucopyranoside. GC/MS analysis of MA peels essential oil led to identification of 37 compounds. The leaves, pseudostem and fruit peels extracts were tested for their safety and their anti-ulcerative colitis efficacy in rats. Rats were classified into: normal, positive, prednisolone reference group, MA extracts pretreated groups (250-500 mg/kg) for 2 weeks followed by induction of ulcerative colitis by per-rectal infusion of 8% acetic acid. Macroscopic and microscopic examinations were done. Inflammatory markers (ANCA, CRP and Ilß6) were measured in sera. The butanol extracts showed good antioxidant and anti-inflammatory activities as they ameliorated macroscopic and microscopic signs of ulcerative colitis and lowered the inflammatory markers compared to untreated group. MA wastes can be a potential source of bioactive metabolites for industrial use and future employment as promising anti-ulcerative colitis food supplements.
Asunto(s)
Colitis Ulcerosa , Musa , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Colitis Ulcerosa/tratamiento farmacológico , Extractos Vegetales/química , Quercetina/uso terapéutico , RatasRESUMEN
Acacia nilotica (synonym: Vachellia nilotica (L.) P.J.H.Hurter and Mabb.) is considered an important plant of the family Fabaceae that is used in traditional medicine in many countries all over the world. In this work, the antiviral potentialities of the chemically characterized essential oils (EOs) obtained from the bark and fruits of A. nilotica were assessed in vitro against HAV, HSV1, and HSV2. Additionally, the in silico evaluation of the main compounds in both EOs was carried out against the two proteins, 3C protease of HAV and thymidine kinase (TK) of HSV. The chemical profiling of the bark EOs revealed the identification of 32 compounds with an abundance of di- (54.60%) and sesquiterpenes (39.81%). Stachene (48.34%), caryophyllene oxide (19.11%), and spathulenol (4.74%) represented the main identified constituents of bark EO. However, 26 components from fruit EO were assigned, with the majority of mono- (63.32%) and sesquiterpenes (34.91%), where trans-caryophyllene (36.95%), Z-anethole (22.87%), and γ-terpinene (7.35%) represented the majors. The maximum non-toxic concentration (MNTC) of the bark and fruits EOs was found at 500 and 1000 µg/mL, respectively. Using the MTT assay, the bark EO exhibited moderate antiviral activity with effects of 47.26% and 35.98% and a selectivity index (SI) of 2.3 and 1.6 against HAV and HSV1, respectively. However, weak activity was observed via the fruits EO with respective SI values of 3.8, 5.7, and 1.6 against HAV, HSV1, and HSV2. The in silico results exhibited that caryophyllene oxide and spathulenol (the main bark EO constituents) showed the best affinities (ΔG = -5.62, -5.33, -6.90, and -6.76 kcal/mol) for 3C protease and TK, respectively. While caryophyllene (the major fruit EO component) revealed promising binding capabilities against both proteins (ΔG = -5.31, -6.58 kcal/mol, respectively). The molecular dynamics simulation results revealed that caryophyllene oxide has the most positive van der Waals energy interaction with 3C protease and TK with significant binding free energies. Although these findings supported the antiviral potentialities of the EOs, especially bark EO, the in vivo assessment should be tested in the intraoral examination for these EOs and/or their main constituents.
RESUMEN
Healthcare and education systems have been identified by various national and international organizations as the main pillars of communities' stability. Understanding the correlation between these main social services institutions is critical to determining the tipping point of communities following natural disasters. Despite being defined as social services stability indicators, to date, no studies have been conducted to determine the level of interdependence between schools and hospitals and their collective influence on their recoveries following extreme events. In this study, we devise an agent-based model to investigate the complex interaction between healthcare and education networks and their overall recovery, while considering other physical, social, and economic factors. We employ comprehensive models to simulate the functional processes within each facility and to optimize their recovery trajectories after earthquake occurrence. The results highlight significant interdependencies between hospitals and schools, including direct and indirect relationships, suggesting the need for collective coupling of their recovery to achieve full functionality of either of the two systems following natural disasters. Recognizing this high level of interdependence, we then establish a social services stability index, which can be used by policymakers and community leaders to quantify the impact of healthcare and education services on community resilience and social services stability.
Asunto(s)
Planificación en Desastres/métodos , Administración Hospitalaria/métodos , Desastres Naturales , Salud Pública/métodos , Instituciones Académicas/organización & administración , Servicio Social/métodos , Planificación en Desastres/organización & administración , Planificación en Desastres/normas , Terremotos , Administración Hospitalaria/estadística & datos numéricos , Hospitales , Humanos , Modelos Organizacionales , Salud Pública/normas , Instituciones Académicas/normas , Instituciones Académicas/estadística & datos numéricos , Servicio Social/organización & administración , Servicio Social/normasRESUMEN
The risk of overwhelming hospitals from multiple waves of COVID-19 is yet to be quantified. Here, we investigate the impact of different scenarios of releasing strong measures implemented around the U.S. on COVID-19 hospitalized cases and the risk of overwhelming the hospitals while considering resources at the county level. We show that multiple waves might cause an unprecedented impact on the hospitals if an increasing number of the population becomes susceptible and/or if the various protective measures are discontinued. Furthermore, we explore the ability of different mitigation strategies in providing considerable relief to hospitals. The results can help planners, policymakers, and state officials decide on additional resources required and when to return to normalcy.
Asunto(s)
COVID-19/epidemiología , Política de Salud/tendencias , Hospitalización/tendencias , Atención a la Salud/tendencias , Instituciones de Salud/tendencias , Hospitalización/estadística & datos numéricos , Hospitales/tendencias , Humanos , Modelos Estadísticos , Pandemias/estadística & datos numéricos , SARS-CoV-2/patogenicidad , Estados Unidos/epidemiologíaRESUMEN
The current COVID-19 pandemic has demonstrated the vulnerability of healthcare systems worldwide. When combined with natural disasters, pandemics can further strain an already exhausted healthcare system. To date, frameworks for quantifying the collective effect of the two events on hospitals are nonexistent. Moreover, analytical methods for capturing the dynamic spatiotemporal variability in capacity and demand of the healthcare system posed by different stressors are lacking. Here, we investigate the combined impact of wildfire and pandemic on a network of hospitals. We combine wildfire data with varying courses of the spread of COVID-19 to evaluate the effectiveness of different strategies for managing patient demand. We show that losing access to medical care is a function of the relative occurrence time between the two events and is substantial in some cases. By applying viable mitigation strategies and optimizing resource allocation, patient outcomes could be substantially improved under the combined hazards.
Asunto(s)
COVID-19/epidemiología , Atención a la Salud , Instituciones de Salud , Administración de Instituciones de Salud/métodos , Desastres Naturales , Pandemias , Política de Salud , Humanos , Unidades de Cuidados Intensivos , Salud Pública , SARS-CoV-2/aislamiento & purificación , Estados UnidosRESUMEN
Natural disasters may have catastrophic and long-lasting impacts on communities' physical, economic, and social infrastructure. Slow recovery of educational services following such events is likely to cause traumatic stress in children, lead families to out-migrate, and affect the community's overall social stability. Methods for quantifying and assessing the restoration process of educational systems and their dependencies on other supporting infrastructure have not received adequate attention. This study introduces, for the first time, a new framework to evaluate the functionality, recovery, and resilience of a school system following severe earthquake events. The framework considers both the quantity and quality of education services provided, school enrollment, and staff employment, as well as the interaction between various agents such as staff, students, parents, administration, and community. A virtual testbed community, Centerville, is utilized to highlight the application of this framework. The impact of school reopening policies on the number of students enrolled as well as the potential for homeschooling is also considered. The availability of various enrollment alternatives for students, backup classroom space and functioning utility systems, and facilitation of staff and supplies transfer between schools substantially increase the resilience of the education service.
RESUMEN
The present work evaluated the effect of flaxseed oil (FO) against toxicity induced by cadmium chloride (CdCl2) in the mouse liver and kidney. Male Swiss albino mice were treated with CdCl2 (4.5 mg/kg, intraperitoneally) with or without FO at three concentrations (4, 8, 12 mL/kg, orally) for two consecutive weeks. To analyze the effects of FO, we used the following techniques: (1) histopathological examination; (2) comet assay; (3) RT-PCR gene expression analysis of tumor necrosis factor (TNF-α) and tumor suppressor protein (p53); and (4) immunohistochemical analysis of caspase-9 protein expression. The gas chromatography-mass spectrometry results showed that FO had a high content of unsaturated fatty acids including, oleic acid, linolenic acid, and linoleic acid. Oral supplementation with FO (12 mL/kg) resulted in a normal histological appearance without alteration in the DNA integrity and gene expression of TNF-α, p53, and caspase-9 in liver and kidney tissues. As expected, CdCl2 remarkably induced loss of histological integrity, increased DNA comet formation, increased TNF-α and p53 mRNA expression levels and increased the immunoreactivity of caspase-9 expression. When FO was given before administration of CdCl2, these histopathological defects were reversed; necrosis, degeneration, inflammatory cell infiltration, hemorrhage, Kupffer cells, and pyknotic cells were all reduced. These histological improvements induced by FO were accompanied by reduced DNA breakage, downregulated mRNA expression of TNF-α and p53, and downregulated immunohistochemical expression of caspase-9 protein. In conclusion, FO and its constituents may act as signaling molecules and modify the expression of genes involved in proinflammatory cytokine production (TNF-α), cell cycle arrest (p53), and apoptosis (caspase-9), thereby improving biological activities and health.
RESUMEN
This qualitative study examines how regional health care capacity is associated with extreme heat event vulnerability.
Asunto(s)
Calor Extremo , Humanos , Calor Extremo/efectos adversos , Hospitales/estadística & datos numéricos , Estados UnidosRESUMEN
The present work was conducted to evaluate the genotoxic effect of carbon tetrachloride (CCl4) in mouse bone marrow and male germ cells. The safety and the modulating activity of sage (Salvia officinalis L.) essential oil (SEO) against the possible genotoxic effect of CCl4 were also evaluated. A combination of in vivo mutagenic endpoints was included: micronucleus (MN), apoptosis using dual acridine orange/ethidium bromide (AO/EB) staining, comet assay, chromosomal aberrations (CAs), and sperm abnormalities. Histological examination of testis tissues was also studied. The extracted SEO was subjected to gas chromatography-mass spectrometry (GC-MS) for identifying its chemical constituents. Safety/genotoxicity of SEO was determined after two consecutive weeks (5 days/week) from oral treatment with different concentrations (0.1, 0.2, and 0.4 mL/kg). For assessing genotoxicity of CCl4, both acute (once) and subacute i.p. treatment for 2 weeks (3 days/week) with the concentrations 1.2 mL/kg (for acute) and 0.8 mL/kg (for subacute) were performed. For evaluating the protective role of SEO, simultaneous treatment with SEO plus CCl4 was examined. In sperm abnormalities, mice were treated with the subject materials for five successive days and the samples were collected after 35 days from the beginning of treatment. Based on GC-MS findings, 22 components were identified in the chromatogram of SEO. The results demonstrated that the three concentrations of SEO were safe and non-genotoxic in all the tested endpoints. Negative results were also observed in bone marrow after acute and subacute treatment with CCl4. In contrast, CCl4 induced testicular DNA damage as evidenced by a significant increase of CAs in primary spermatocytes, sperm abnormalities, and histological distortion of testis. A remarkable reduction in these cells was observed in groups treated with SEO plus CCl4 especially with the two higher concentrations of SEO. In conclusion, SEO is safe and non-genotoxic under the tested conditions and can modulate genetic damage and histological alteration induced by CCl4 in the testes.