Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Diabetes Obes Metab ; 21(10): 2294-2304, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31183936

RESUMEN

AIMS: We previously quantified the hypoglycaemia-sparing effect of portal vs peripheral human insulin delivery. The current investigation aimed to determine whether a bioequivalent peripheral vein infusion of a hepatopreferential insulin analog, insulin-406, could similarly protect against hypoglycaemia. MATERIALS AND METHODS: Dogs received human insulin infusions into either the hepatic portal vein (PoHI, n = 7) or a peripheral vein (PeHI, n = 7) for 180 minutes at four-fold the basal secretion rate (6.6 pmol/kg/min) in a previous study. Insulin-406 (Pe406, n = 7) was peripherally infused at 6.0 pmol/kg/min, a rate determined to decrease plasma glucose by the same amount as with PoHI infusion during the first 60 minutes. Glucagon was fixed at basal concentrations, mimicking the diminished α-cell response seen in type 1 diabetes. RESULTS: Glucose dropped quickly with PeHI infusion, reaching 41 ± 3 mg/dL at 60 minutes, but more slowly with PoHI and Pe406 infusion (67 ± 2 and 72 ± 4 mg/dL, respectively; P < 0.01 vs PeHI for both). The hypoglycaemic nadir (c. 40 mg/dL) occurred at 60 minutes with PeHI infusion vs 120 minutes with PoHI and Pe406 infusion. ΔAUCepinephrine during the 180-minute insulin infusion period was two-fold higher with PeHI infusion compared with PoHI and Pe406 infusion. Glucose production (mg/kg/min) was least suppressed with PeHI infusion (Δ = 0.79 ± 0.33) and equally suppressed with PoHI and Pe406 infusion (Δ = 1.16 ± 0.21 and 1.18 ± 0.17, respectively; P = NS). Peak glucose utilization (mg/kg/min) was highest with PeHI infusion (4.94 ± 0.17) and less with PoHI and Pe406 infusion (3.58 ± 0.58 and 3.26 ± 0.08, respectively; P < 0.05 vs Pe for both). CONCLUSIONS: Peripheral infusion of hepatopreferential insulin can achieve a metabolic profile that closely mimics portal insulin delivery, which reduces the risk of hypoglycaemia compared with peripheral insulin infusion.


Asunto(s)
Hipoglucemiantes , Insulina Regular Humana , Insulina , Vena Porta/metabolismo , Animales , Glucemia/análisis , Glucemia/metabolismo , Diabetes Mellitus Tipo 1 , Perros , Gluconeogénesis , Humanos , Hipoglucemia/metabolismo , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacología , Infusiones Intravenosas , Insulina/administración & dosificación , Insulina/análogos & derivados , Insulina/sangre , Insulina/farmacología , Insulina Regular Humana/administración & dosificación , Insulina Regular Humana/farmacología , Hígado/metabolismo , Masculino
2.
PLoS One ; 18(12): e0296400, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38134122

RESUMEN

This study examined the impact of a hypercaloric high-fat high-fructose diet (HFFD) in dogs as a potential model for human impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM). The HFFD not only led to weight gain but also triggered metabolic alterations akin to the precursors of human T2DM, notably insulin resistance and ß-cell dysfunction. Following the HFFD intervention, the dogs exhibited a 50% decrease in insulin sensitivity within the first four weeks, paralleling observations in the progression from normal to IGT in humans. Calculations of the insulinogenic index using both insulin and C-peptide measurements during oral glucose tolerance tests revealed a significant and sustained decrease in early-phase insulin release, with partial compensation in the later phase, predominantly stemming from reduced hepatic insulin clearance. In addition, the Disposition Index, representing the ß-cell's capacity to compensate for diminished insulin sensitivity, fell dramatically. These results confirm that a HFFD can instigate metabolic changes in dogs akin to the early stages of progression to T2DM in humans. The study underscores the potential of using dogs subjected to a HFFD as a model organism for studying human IGT and T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Intolerancia a la Glucosa , Resistencia a la Insulina , Humanos , Perros , Animales , Fructosa , Insulina/metabolismo , Dieta Alta en Grasa/efectos adversos , Glucemia/metabolismo
3.
Metabolism ; 56(6): 814-24, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17512315

RESUMEN

We examined the role of vagus nerves in the transmission of the portal glucose signal in conscious dogs. At time 0, somatostatin infusion was started along with intraportal insulin and glucagon at 4-fold basal and basal rates, respectively. Glucose was infused via a peripheral vein to create hyperglycemia ( approximately 2 fold basal). At t = 90, hollow coils around the vagus nerves were perfused with -10 degrees C or 37 degrees C solution in the vagally cooled (COOL) and sham-cooled (SHAM) groups, respectively (n = 6 per group). Effectiveness of vagal blockade was demonstrated by increase in heart rate during perfusion in the COOL vs SHAM groups (183 +/- 3 vs 102 +/- 5 beats per minute, respectively) and by prolapse of the third eyelid in the COOL group. Arterial plasma insulin (22 +/- 2 and 24 +/- 3 micro U/mL) and glucagon (37 +/- 5 and 40 +/- 4 pg/mL) concentrations did not change significantly between the first experimental period and the coil perfusion period in either the SHAM or COOL group, respectively. The hepatic glucose load throughout the entire experiment was 46 +/- 1 and 50 +/- 2 mg . kg(-1) . min(-1) in the SHAM and COOL groups, respectively. Net hepatic glucose uptake (NHGU) did not differ in the SHAM and COOL groups before (2.2 +/- 0.5 and 2.9 +/- 0.8 mg . kg(-1) . min(-1), respectively) or during the cooling period (3.0 +/- 0.5 and 3.4 +/- 0.6 mg . kg(-1) . min(-1), respectively). Likewise, net hepatic glucose fractional extraction and nonhepatic glucose uptake and clearance were not different between groups during coil perfusion. Interruption of vagal signaling in the presence of hyperinsulinemia and hyperglycemia resulting from peripheral glucose infusion did not affect NHGU, further supporting our previous suggestion that vagal input to the liver is not a primary determinant of NHGU.


Asunto(s)
Glucosa/metabolismo , Hiperglucemia/metabolismo , Hígado/metabolismo , Nervio Vago/fisiología , Animales , Glucemia/análisis , Frío , Perros , Ácido Láctico/metabolismo , Circulación Hepática
4.
Diabetes ; 64(10): 3439-51, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26085570

RESUMEN

Hypoglycemia limits optimal glycemic control in type 1 diabetes mellitus (T1DM), making novel strategies to mitigate it desirable. We hypothesized that portal (Po) vein insulin delivery would lessen hypoglycemia. In the conscious dog, insulin was infused into the hepatic Po vein or a peripheral (Pe) vein at a rate four times of basal. In protocol 1, a full counterregulatory response was allowed, whereas in protocol 2, glucagon was fixed at basal, mimicking the diminished α-cell response to hypoglycemia seen in T1DM. In protocol 1, glucose fell faster with Pe insulin than with Po insulin, reaching 56 ± 3 vs. 70 ± 6 mg/dL (P = 0.04) at 60 min. The change in area under the curve (ΔAUC) for glucagon was similar between Pe and Po, but the peak occurred earlier in Pe. The ΔAUC for epinephrine was greater with Pe than with Po (67 ± 17 vs. 36 ± 14 ng/mL/180 min). In protocol 2, glucose also fell more rapidly than in protocol 1 and fell faster in Pe than in Po, reaching 41 ± 3 vs. 67 ± 2 mg/dL (P < 0.01) by 60 min. Without a rise in glucagon, the epinephrine responses were much larger (ΔAUC of 204 ± 22 for Pe vs. 96 ± 29 ng/mL/180 min for Po). In summary, Pe insulin delivery exacerbates hypoglycemia, particularly in the presence of a diminished glucagon response. Po vein insulin delivery, or strategies that mimic it (i.e., liver-preferential insulin analogs), should therefore lessen hypoglycemia.


Asunto(s)
Diabetes Mellitus Tipo 1/tratamiento farmacológico , Hipoglucemia/inducido químicamente , Insulina/administración & dosificación , Insulina/efectos adversos , Administración Intravenosa , Animales , Glucemia/metabolismo , Perros , Glucagón/farmacología , Glucosa/metabolismo , Humanos , Insulina/uso terapéutico , Masculino , Vena Porta , Somatostatina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA