Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Methods ; 19(3): 284-295, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34811556

RESUMEN

Tissues and organs are composed of distinct cell types that must operate in concert to perform physiological functions. Efforts to create high-dimensional biomarker catalogs of these cells have been largely based on single-cell sequencing approaches, which lack the spatial context required to understand critical cellular communication and correlated structural organization. To probe in situ biology with sufficient depth, several multiplexed protein imaging methods have been recently developed. Though these technologies differ in strategy and mode of immunolabeling and detection tags, they commonly utilize antibodies directed against protein biomarkers to provide detailed spatial and functional maps of complex tissues. As these promising antibody-based multiplexing approaches become more widely adopted, new frameworks and considerations are critical for training future users, generating molecular tools, validating antibody panels, and harmonizing datasets. In this Perspective, we provide essential resources, key considerations for obtaining robust and reproducible imaging data, and specialized knowledge from domain experts and technology developers.


Asunto(s)
Anticuerpos , Comunicación Celular , Diagnóstico por Imagen
2.
Cell Rep ; 42(1): 112014, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36681898

RESUMEN

The SARS-CoV-2 Omicron variant of concern (VoC) and its sublineages contain 31-36 mutations in spike and escape neutralization by most therapeutic antibodies. In a pseudovirus neutralization assay, 66 of the nearly 400 candidate therapeutics in the Coronavirus Immunotherapeutic Consortium (CoVIC) panel neutralize Omicron and multiple Omicron sublineages. Among natural immunoglobulin Gs (IgGs), especially those in the receptor-binding domain (RBD)-2 epitope community, nearly all Omicron neutralizers recognize spike bivalently, with both antigen-binding fragments (Fabs) simultaneously engaging adjacent RBDs on the same spike. Most IgGs that do not neutralize Omicron bind either entirely monovalently or have some (22%-50%) monovalent occupancy. Cleavage of bivalent-binding IgGs to Fabs abolishes neutralization and binding affinity, with disproportionate loss of activity against Omicron pseudovirus and spike. These results suggest that VoC-resistant antibodies overcome mutagenic substitution via avidity. Hence, vaccine strategies targeting future SARS-CoV-2 variants should consider epitope display with spacing and organization identical to trimeric spike.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Etnicidad , Epítopos , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Pruebas de Neutralización
3.
Diagnostics (Basel) ; 11(7)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34208912

RESUMEN

Identifying anti-spike antibodies that exhibit strong neutralizing activity against current dominant circulating variants, and antibodies that are escaped by these variants, has important implications in the development of therapeutic and diagnostic solutions and in improving understanding of the humoral response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We characterized seven anti-SARS-CoV-2 receptor binding domain (RBD) antibodies for binding activity, pairing capability, and neutralization activity to SARS-CoV-2 and three variant RBDs via lateral flow immunoassays. The results allowed us to group these antibodies into three distinct epitope bins. Our studies showed that two antibodies had broadly potent neutralizing activity against SARS-CoV-2 and these variant RBDs and that one antibody did not neutralize the South African (SA) and Brazilian P.1 (BR P.1) RBDs. The antibody escaped by the SA and BR P.1 RBDs retained binding activity to SA and BR P.1 RBDs but was unable to induce neutralization. We demonstrated that lateral flow immunoassay could be a rapid and effective tool for antibody characterization, including epitope classification and antibody neutralization kinetics. The potential contributions of the mutations (N501Y, E484K, and K417N/T) contained in these variants' RBDs to the antibody pairing capability, neutralization activity, and therapeutic antibody targeting strategy are discussed.

4.
Dev Biol ; 336(2): 183-91, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19799895

RESUMEN

Early patterning of vertebrate embryos involves the generation of asymmetric signals across the left-right (L-R) axis that position and are required for the proper function of internal organs. This patterning is directed by a conserved nodal/lefty signaling cascade on the left side of the embryo, thought to be asymmetrically directed by ciliary beating that generates a leftward fluid flow in the mammalian node and in Kupffer's vesicle (KV), the related structure in zebrafish. Following morpholino knockdown of Cx43.4, asymmetric gene expression and global organ distribution are randomized, consistent with the expression of Cx43.4 in KV. Randomization is recapitulated in mosaic embryos in which Cx43.4 is depleted preferentially in KV cells, showing that Cx43.4 is specifically required in KV for proper L-R axis formation. The mechanistic basis for the laterality anomalies in Cx43.4-deficient embryos is a primary morphogenesis defect during lumen formation in KV. Additionally, the role of Cx43.4 appears to be conserved given that its ortholog, human Cx45, is able to functionally compensate for zebrafish Cx43.4 during L-R patterning. This is the first report linking connexin function in the ciliated, node-like cells of KV with normal L-R axis development.


Asunto(s)
Tipificación del Cuerpo , Conexina 43/fisiología , Animales , Conexina 43/genética , Regulación del Desarrollo de la Expresión Génica , Mosaicismo , Pez Cebra
5.
PLoS One ; 6(4): e18826, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21533036

RESUMEN

Large-scale sequencing of human cancer genomes and mouse transposon-induced tumors has identified a vast number of genes mutated in different cancers. One of the outstanding challenges in this field is to determine which genes, when mutated, contribute to cellular transformation and tumor progression. To identify new and conserved genes that drive tumorigenesis we have developed a novel cancer model in a distantly related vertebrate species, the zebrafish, Danio rerio. The Sleeping Beauty (SB) T2/Onc transposon system was adapted for somatic mutagenesis in zebrafish. The carp ß-actin promoter was cloned into T2/Onc to create T2/OncZ. Two transgenic zebrafish lines that contain large concatemers of T2/OncZ were isolated by injection of linear DNA into the zebrafish embryo. The T2/OncZ transposons were mobilized throughout the zebrafish genome from the transgene array by injecting SB11 transposase RNA at the 1-cell stage. Alternatively, the T2/OncZ zebrafish were crossed to a transgenic line that constitutively expresses SB11 transposase. T2/OncZ transposon integration sites were cloned by ligation-mediated PCR and sequenced on a Genome Analyzer II. Between 700-6800 unique integration events in individual fish were mapped to the zebrafish genome. The data show that introduction of transposase by transgene expression or RNA injection results in an even distribution of transposon re-integration events across the zebrafish genome. SB11 mRNA injection resulted in neoplasms in 10% of adult fish at ∼10 months of age. T2/OncZ-induced zebrafish tumors contain many mutated genes in common with human and mouse cancer genes. These analyses validate our mutagenesis approach and provide additional support for the involvement of these genes in human cancers. The zebrafish T2/OncZ cancer model will be useful for identifying novel and conserved genetic drivers of human cancers.


Asunto(s)
Elementos Transponibles de ADN , Mutagénesis , Animales , Animales Modificados Genéticamente , Secuencia de Bases , ADN/genética , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA