RESUMEN
Livestock heat stress threatens production, particularly in semi-arid, arid and tropical regions. Using established temperature thresholds for sheep, we modelled +1 °C and +3 °C temperature increases over the historical baseline, estimating that 2.1 million potential lambs are lost annually due to heat stress alone, increasing to 2.5 and 3.3 million, respectively, as temperatures rise. Heat stress poses risks at key periods of the reproductive cycle, with consequences across the Australian sheep flock.
Asunto(s)
Trastornos de Estrés por Calor , Ovinos , Animales , Embarazo , Femenino , Peso al Nacer , Temperatura , Australia/epidemiología , Tamaño de la Camada , Trastornos de Estrés por Calor/veterinaria , Respuesta al Choque TérmicoRESUMEN
Heat stress significantly impairs reproduction of sheep, and under current climatic conditions is a significant risk to the efficiency of the meat and wool production, with the impact increasing as global temperatures rise. Evidence from field studies and studies conducted using environmental chambers demonstrate the effects of hot temperatures (≥ 32 °C) on components of ewe fertility (oestrus, fertilisation, embryo survival and lambing) are most destructive when experienced from 5 d before until 5 d after oestrus. Temperature controlled studies also demonstrate that ram fertility, as measured by rates of fertilisation and embryo survival, is reduced when mating occurs during the period 14 to 50 d post-heating. However, the contribution of the ram to heat induced reductions in flock fertility is difficult to determine accurately. Based primarily on temperature controlled studies, it is clear that sustained exposure to high temperatures (≥ 32 °C) during pregnancy reduces lamb birthweight and will, therefore, decrease lamb survival under field conditions. It is concluded that both ewe and ram reproduction is affected by relatively modest levels of heat stress (≥ 32 °C) and this is a concern given that a significant proportion of the global sheep population experiences heat stress of this magnitude around mating and during pregnancy. Despite this, strategies to limit the impacts of the climate on the homeothermy, behaviour, resource use and reproduction of extensively grazed sheep are limited, and there is an urgency to improve knowledge and to develop husbandry practices to limit these impacts.