RESUMEN
Accurate understanding of permafrost dynamics is critical for evaluating and mitigating impacts that may arise as permafrost degrades in the future; however, existing projections have large uncertainties. Studies of how permafrost responded historically during Earth's past warm periods are helpful in exploring potential future permafrost behavior and to evaluate the uncertainty of future permafrost change projections. Here, we combine a surface frost index model with outputs from the second phase of the Pliocene Model Intercomparison Project to simulate the near-surface (~3 to 4 m depth) permafrost state in the Northern Hemisphere during the mid-Pliocene warm period (mPWP, ~3.264 to 3.025 Ma). This period shares similarities with the projected future climate. Constrained by proxy-based surface air temperature records, our simulations demonstrate that near-surface permafrost was highly spatially restricted during the mPWP and was 93 ± 3% smaller than the preindustrial extent. Near-surface permafrost was present only in the eastern Siberian uplands, Canadian high Arctic Archipelago, and northernmost Greenland. The simulations are similar to near-surface permafrost changes projected for the end of this century under the SSP5-8.5 scenario and provide a perspective on the potential permafrost behavior that may be expected in a warmer world.
RESUMEN
Widespread establishment of peatlands since the Last Glacial Maximum represents the activation of a globally important carbon sink, but the drivers of peat initiation are unclear. The role of climate in peat initiation is particularly poorly understood. We used a general circulation model to simulate local changes in climate during the initiation of 1,097 peatlands around the world. We find that peat initiation in deglaciated landscapes in both hemispheres was driven primarily by warming growing seasons, likely through enhanced plant productivity, rather than by any increase in effective precipitation. In Western Siberia, which remained ice-free throughout the last glacial period, the initiation of the world's largest peatland complex was globally unique in that it was triggered by an increase in effective precipitation that inhibited soil respiration and allowed wetland plant communities to establish. Peat initiation in the tropics was only weakly related to climate change, and appears to have been driven primarily by nonclimatic mechanisms such as waterlogging due to tectonic subsidence. Our findings shed light on the genesis and Holocene climate space of one of the world's most carbon-dense ecosystem types, with implications for understanding trajectories of ecological change under changing future climates.
Asunto(s)
Carbono/metabolismo , Calentamiento Global , Modelos Biológicos , Suelo , HumedalesRESUMEN
Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.
Asunto(s)
Biota , Cambio Climático/historia , Extinción Biológica , Actividades Humanas/historia , Mamíferos/fisiología , Animales , Teorema de Bayes , Bison , ADN Mitocondrial/análisis , ADN Mitocondrial/genética , Europa (Continente) , Fósiles , Variación Genética , Geografía , Historia Antigua , Caballos , Humanos , Mamíferos/genética , Mamuts , Datos de Secuencia Molecular , Dinámica Poblacional , Reno , Siberia , Especificidad de la Especie , Factores de TiempoRESUMEN
It is thought that the Northern Hemisphere experienced only ephemeral glaciations from the Late Eocene to the Early Pliocene epochs (about 38 to 4 million years ago), and that the onset of extensive glaciations did not occur until about 3 million years ago. Several hypotheses have been proposed to explain this increase in Northern Hemisphere glaciation during the Late Pliocene. Here we use a fully coupled atmosphere-ocean general circulation model and an ice-sheet model to assess the impact of the proposed driving mechanisms for glaciation and the influence of orbital variations on the development of the Greenland ice sheet in particular. We find that Greenland glaciation is mainly controlled by a decrease in atmospheric carbon dioxide during the Late Pliocene. By contrast, our model results suggest that climatic shifts associated with the tectonically driven closure of the Panama seaway, with the termination of a permanent El Niño state or with tectonic uplift are not large enough to contribute significantly to the growth of the Greenland ice sheet; moreover, we find that none of these processes acted as a priming mechanism for glacial inception triggered by variations in the Earth's orbit.
Asunto(s)
Atmósfera/química , Dióxido de Carbono/metabolismo , Cubierta de Hielo , Dióxido de Carbono/análisis , Clima , Groenlandia , Historia Antigua , América del Norte , Lluvia , Factores de TiempoRESUMEN
Estimates of the permafrost-climate feedback vary in magnitude and sign, partly because permafrost carbon stability in warmer-than-present conditions is not well constrained. Here we use a Plio-Pleistocene lacustrine reconstruction of mean annual air temperature (MAAT) from the Tibetan Plateau, the largest alpine permafrost region on the Earth, to constrain past and future changes in permafrost carbon storage. Clumped isotope-temperatures (Δ47-T) indicate warmer MAAT (~1.2 °C) prior to 2.7 Ma, and support a permafrost-free environment on the northern Tibetan Plateau in a warmer-than-present climate. Δ47-T indicate ~8.1 °C cooling from 2.7 Ma, coincident with Northern Hemisphere glacial intensification. Combined with climate models and global permafrost distribution, these results indicate, under conditions similar to mid-Pliocene Warm period (3.3-3.0 Ma), ~60% of alpine permafrost containing ~85 petagrams of carbon may be vulnerable to thawing compared to ~20% of circumarctic permafrost. This estimate highlights ~25% of permafrost carbon and the permafrost-climate feedback could originate in alpine areas.
Asunto(s)
Hielos Perennes , Carbono/análisis , Clima , Región Alpina Europea , TemperaturaRESUMEN
Despite tectonic conditions and atmospheric CO2 levels (pCO2) similar to those of present-day, geological reconstructions from the mid-Pliocene (3.3-3.0 Ma) document high lake levels in the Sahel and mesic conditions in subtropical Eurasia, suggesting drastic reorganizations of subtropical terrestrial hydroclimate during this interval. Here, using a compilation of proxy data and multi-model paleoclimate simulations, we show that the mid-Pliocene hydroclimate state is not driven by direct CO2 radiative forcing but by a loss of northern high-latitude ice sheets and continental greening. These ice sheet and vegetation changes are long-term Earth system feedbacks to elevated pCO2. Further, the moist conditions in the Sahel and subtropical Eurasia during the mid-Pliocene are a product of enhanced tropospheric humidity and a stationary wave response to the surface warming pattern, which varies strongly with land cover changes. These findings highlight the potential for amplified terrestrial hydroclimate responses over long timescales to a sustained CO2 forcing.
Asunto(s)
Planeta Tierra , Cubierta de Hielo , RetroalimentaciónRESUMEN
High-resolution, easily accessible paleoclimate data are essential for environmental, evolutionary, and ecological studies. The availability of bioclimatic layers derived from climatic simulations representing conditions of the Late Pleistocene and Holocene has revolutionized the study of species responses to Late Quaternary climate change. Yet, integrative studies of the impacts of climate change in the Early Pleistocene and Pliocene - periods in which recent speciation events are known to concentrate - have been hindered by the limited availability of downloadable, user-friendly climatic descriptors. Here we present PaleoClim, a free database of downscaled paleoclimate outputs at 2.5-minute resolution (~5 km at equator) that includes surface temperature and precipitation estimates from snapshot-style climate model simulations using HadCM3, a version of the UK Met Office Hadley Centre General Circulation Model. As of now, the database contains climatic data for three key time periods spanning from 3.3 to 0.787 million years ago: the Marine Isotope Stage 19 (MIS19) in the Pleistocene (~787 ka), the mid-Pliocene Warm Period (~3.264-3.025 Ma), and MIS M2 in the Late Pliocene (~3.3 Ma).
RESUMEN
The mid-Pliocene warm period provides a natural laboratory to investigate the long-term response of the Earth's ice-sheets and sea level in a warmer-than-present-day world. Proxy data suggest that during the warm Pliocene, portions of the Antarctic ice-sheets, including West Antarctica could have been lost. Ice-sheet modelling forced by Pliocene climate model outputs is an essential way to improve our understanding of ice-sheets during the Pliocene. However, uncertainty exists regarding the degree to which results are model-dependent. Using climatological forcing from an international climate modelling intercomparison project, we demonstrate the high dependency of Antarctic ice-sheet volume predictions on the climate model-based forcing used. In addition, the collapse of the vulnerable marine basins of Antarctica is dependent on the ice-sheet model used. These results demonstrate that great caution is required in order to avoid making unsound statements about the nature of the Pliocene Antarctic ice-sheet based on model results that do not account for structural uncertainty in both the climate and ice sheet models.
RESUMEN
The Earth underwent a major transition from the warm climates of the Pliocene to the Pleistocene ice ages between 3.2 and 2.6 million years ago. The intensification of Northern Hemisphere Glaciation is the most obvious result of the Plio-Pleistocene transition. However, recent data show that the ocean also underwent a significant change, with the convergence of deep water mass properties in the North Pacific and North Atlantic Ocean. Here we show that the lack of coastal ice in the Pacific sector of Antarctica leads to major reductions in Pacific Ocean overturning and the loss of the modern North Pacific Deep Water (NPDW) mass in climate models of the warmest periods of the Pliocene. These results potentially explain the convergence of global deep water mass properties at the Plio-Pleistocene transition, as Circumpolar Deep Water (CDW) became the common source.
RESUMEN
The mid-Pliocene Warm Period (mPWP) offers an opportunity to understand a warmer-than-present world and assess the predictive ability of numerical climate models. Environmental reconstruction and climate modelling are crucial for understanding the mPWP, and the synergy of these two, often disparate, fields has proven essential in confirming features of the past and in turn building confidence in projections of the future. The continual development of methodologies to better facilitate environmental synthesis and data/model comparison is essential, with recent work demonstrating that time-specific (time-slice) syntheses represent the next logical step in exploring climate change during the mPWP and realizing its potential as a test bed for understanding future climate change.
RESUMEN
Over the last decade, our understanding of climate sensitivity has improved considerably. The climate system shows variability on many timescales, is subject to non-stationary forcing and it is most likely out of equilibrium with the changes in the radiative forcing. Slow and fast feedbacks complicate the interpretation of geological records as feedback strengths vary over time. In the geological past, the forcing timescales were different than at present, suggesting that the response may have behaved differently. Do these insights constrain the climate sensitivity relevant for the present day? In this paper, we review the progress made in theoretical understanding of climate sensitivity and on the estimation of climate sensitivity from proxy records. Particular focus lies on the background state dependence of feedback processes and on the impact of tipping points on the climate system. We suggest how to further use palaeo data to advance our understanding of the currently ongoing climate change.
RESUMEN
The characteristics of the mid-Pliocene warm period (mPWP: 3.264-3.025 Ma BP) have been examined using geological proxies and climate models. While there is agreement between models and data, details of regional climate differ. Uncertainties in prescribed forcings and in proxy data limit the utility of the interval to understand the dynamics of a warmer than present climate or evaluate models. This uncertainty comes, in part, from the reconstruction of a time slab rather than a time slice, where forcings required by climate models can be more adequately constrained. Here, we describe the rationale and approach for identifying a time slice(s) for Pliocene environmental reconstruction. A time slice centred on 3.205 Ma BP (3.204-3.207 Ma BP) has been identified as a priority for investigation. It is a warm interval characterized by a negative benthic oxygen isotope excursion (0.21-0.23) centred on marine isotope stage KM5c (KM5.3). It occurred during a period of orbital forcing that was very similar to present day. Climate model simulations indicate that proxy temperature estimates are unlikely to be significantly affected by orbital forcing for at least a precession cycle centred on the time slice, with the North Atlantic potentially being an important exception.
RESUMEN
The mid-Piacenzian climate represents the most geologically recent interval of long-term average warmth relative to the last million years, and shares similarities with the climate projected for the end of the 21(st) century. As such, it represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. Here, we present the first systematic comparison of Pliocene sea surface temperature (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) with the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional and dynamic situations where there is discord between the palaeoenvironmental reconstruction and the climate model simulations. These differences have led to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction.
RESUMEN
Given the inherent uncertainties in predicting how climate and environments will respond to anthropogenic emissions of greenhouse gases, it would be beneficial to society if science could identify geological analogues to the human race's current grand climate experiment. This has been a focus of the geological and palaeoclimate communities over the last 30 years, with many scientific papers claiming that intervals in Earth history can be used as an analogue for future climate change. Using a coupled ocean-atmosphere modelling approach, we test this assertion for the most probable pre-Quaternary candidates of the last 100 million years: the Mid- and Late Cretaceous, the Palaeocene-Eocene Thermal Maximum (PETM), the Early Eocene, as well as warm intervals within the Miocene and Pliocene epochs. These intervals fail as true direct analogues since they either represent equilibrium climate states to a long-term CO(2) forcing--whereas anthropogenic emissions of greenhouse gases provide a progressive (transient) forcing on climate--or the sensitivity of the climate system itself to CO(2) was different. While no close geological analogue exists, past warm intervals in Earth history provide a unique opportunity to investigate processes that operated during warm (high CO(2)) climate states. Palaeoclimate and environmental reconstruction/modelling are facilitating the assessment and calculation of the response of global temperatures to increasing CO(2) concentrations in the longer term (multiple centuries); this is now referred to as the Earth System Sensitivity, which is critical in identifying CO(2) thresholds in the atmosphere that must not be crossed to avoid dangerous levels of climate change in the long term. Palaeoclimatology also provides a unique and independent way to evaluate the qualities of climate and Earth system models used to predict future climate.
RESUMEN
The Mid-Pliocene (ca 3Myr ago) was a relatively warm period, with increased atmospheric CO2 relative to pre-industrial. It has therefore been highlighted as a possible palaeo-analogue for the future. However, changed vegetation patterns, orography and smaller ice sheets also influenced the Mid-Pliocene climate. Here, using a general circulation model and ice-sheet model, we determine the relative contribution of vegetation and soils, orography and ice, and CO2 to the Mid-Pliocene Arctic climate and cryosphere. Compared with pre-industrial, we find that increased Mid-Pliocene CO2 contributes 35 per cent, lower orography and ice-sheet feedbacks contribute 42 per cent, and vegetation changes contribute 23 per cent of Arctic temperature change. The simulated Mid-Pliocene Greenland ice sheet is substantially smaller than that of modern, mostly due to the higher CO2. However, our simulations of future climate change indicate that the same increase in CO2 is not sufficient to melt the modern ice sheet substantially. We conclude that, although the Mid-Pliocene resembles the future in some respects, care must be taken when interpreting it as an exact analogue due to vegetation and ice-sheet feedbacks. These act to intensify Mid-Pliocene Arctic climate change, and act on a longer time scale than the century scale usually addressed in future climate prediction.
RESUMEN
It has been suggested that, during the Pliocene (ca 5-1.8Ma), an El Niño state existed as a permanent rather than an intermittent feature; that is, the tropical Pacific Ocean was characterized by a much weaker east-west gradient than today. One line of inquiry used to investigate this idea relates modern El Niño teleconnections to Pliocene proxy data by comparing regional differences in precipitation and surface temperature with climate patterns associated with present-day El Niño events, assuming that agreement between Pliocene data and observations of modern El Niño events supports this interpretation. Here, we examine this assumption by comparing outputs from a suite of Mid-Pliocene climate simulations carried out with the UK Met Office climate model. Regional patterns of climate change associated with changes in model boundary conditions are compared with observed El Niño-Southern Oscillation teleconnection patterns. Our results indicate that many of the proposed 'permanent El Niño' surface temperature and precipitation patterns are observable in Mid-Pliocene climate simulations even when they display variability in tropical Pacific sea surface temperatures (SSTs) or when forced with a modern east-west SST gradient. Our experiments highlight the possibility that the same outcome may be achieved through different initial conditions (equifinality); an important consideration for reconstructed patterns of regional Mid-Pliocene climate.
RESUMEN
Climate predictions produced by numerical climate models, often referred to as general circulation models (GCMs), suggest that by the end of the twenty-first century global mean annual surface air temperatures will increase by 1.1-6.4 degrees C. Trace gas records from ice cores indicate that atmospheric concentrations of CO2 are already higher than at any time during the last 650000 years. In the next 50 years, atmospheric CO2 concentrations are expected to reach a level not encountered since an epoch of time known as the Pliocene. Uniformitarianism is a key principle of geological science, but can the past also be a guide to the future? To what extent does an examination of the Pliocene geological record enable us to successfully understand and interpret this guide? How reliable are the 'retrodictions' of Pliocene climates produced by GCMs and what does this tell us about the accuracy of model predictions for the future? These questions provide the scientific rationale for this Theme Issue.
RESUMEN
This paper reviews North Atlantic shelf seas palaeoclimate during the interval 4-3Ma, prior to and incorporating the 'Mid-Pliocene warm period' (ca 3.29-2.97Ma). Fossil assemblages and stable isotope data demonstrate northwards extension of subtropical faunas along the coast of the Carolinas-Virginia (Yorktown and Duplin Formations) relative to the present day, suggesting a more vigorous Florida Current, with reduced seasonality and warm water extending north of Cape Hatteras (reconstructed annual range for Virginia 12-30 degrees C). This interpretation supports conceptual models of increased meridional heat transport for the Pliocene. Sea temperatures for Florida (Lower Pinecrest Beds) were similar to or slightly cooler than (summers 25-27 degrees C) today, and were probably influenced by seasonal upwelling of cold deep water. Reduced seasonality is also apparent in the Coralline Crag Formation of the southern North Sea, with ostracods suggesting winter sea temperatures of 10 degrees C (modern 4 degrees C). However, estimates from Pliocene bivalves (3.6-16.6 degrees C) are similar to or cooler than the present day. This 'mixed' signal is problematic given warmer seas in the Carolinas-Virginia, and climate model and oceanographic data that show warmer seas in the 'Mid-Pliocene' eastern North Atlantic. This may be because the Coralline Crag Formation was deposited prior to peak Mid-Pliocene warmth.