Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
MedComm (2020) ; 5(9): e685, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39156764

RESUMEN

Chimeric RNAs, distinct from DNA gene fusions, have emerged as promising therapeutic targets with diverse functions in cancer treatment. However, the functional significance and therapeutic potential of most chimeric RNAs remain unclear. Here we identify a novel fusion transcript of solute carrier family 2-member 11 (SLC2A11) and macrophage migration inhibitory factor (MIF). In this study, we investigated the upregulation of SLC2A11-MIF in The Cancer Genome Atlas cohort and a cohort of patients from Sun Yat-Sen Memorial Hospital. Subsequently, functional investigations demonstrated that SLC2A11-MIF enhanced the proliferation, antiapoptotic effects, and metastasis of bladder cancer cells in vitro and in vivo. Mechanistically, the fusion protein encoded by SLC2A11-MIF interacted with polypyrimidine tract binding protein 1 (PTBP1) and regulated the mRNA half-lives of Polo Like Kinase 1, Roundabout guidance receptor 1, and phosphoinositide-3-kinase regulatory subunit 3 in BCa cells. Moreover, PTBP1 knockdown abolished the enhanced impact of SLC2A11-MIF on biological function and mRNA stability. Furthermore, the expression of SLC2A11-MIF mRNA is regulated by CCCTC-binding factor and stabilized through RNA N4-acetylcytidine modification facilitated by N-acetyltransferase 10. Overall, our findings revealed a significant fusion protein orchestrated by the SLC2A11-MIF-PTBP1 axis that governs mRNA stability during the multistep progression of bladder cancer.

2.
Oncol Lett ; 21(3): 200, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33574939

RESUMEN

Increasing evidence has suggested an association between the expression profiles of microRNAs (miRs) and gallbladder cancer (GBC). Recently, miR-182 has been demonstrated to exert tumor-promoting effects. However, the biological activity and molecular mechanisms of miR-182 in GBC remain unclear. The results of the present study demonstrated that miR-182 expression was significantly upregulated in GBC tissues and cell lines (GBC-SD and SGC-996). In addition, miR-182-knockdown attenuated epithelial-mesenchymal transition (EMT) in GBC cells, as indicated by decreased cell migratory and invasive abilities, decreased vimentin expression, and increased E-cadherin expression. The activities of ß-catenin and its downstream factors, Cyclin D1 and c-Myc, were also demonstrated to decrease following miR-182-knockdown. Forkhead box N3 (FOXN3) was identified as the direct target of miR-182. Overexpression of FOXN3 ameliorated EMT and the ß-catenin pathway. Taken together, the results of the present study suggested that miR-182 promotes EMT in GBC cells by targeting FOXN3, which suppresses the Wnt/ß-catenin pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA