Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 164(5): 999-1014, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26875865

RESUMEN

Transcription factors (TFs) are thought to function with partners to achieve specificity and precise quantitative outputs. In the developing heart, heterotypic TF interactions, such as between the T-box TF TBX5 and the homeodomain TF NKX2-5, have been proposed as a mechanism for human congenital heart defects. We report extensive and complex interdependent genomic occupancy of TBX5, NKX2-5, and the zinc finger TF GATA4 coordinately controlling cardiac gene expression, differentiation, and morphogenesis. Interdependent binding serves not only to co-regulate gene expression but also to prevent TFs from distributing to ectopic loci and activate lineage-inappropriate genes. We define preferential motif arrangements for TBX5 and NKX2-5 cooperative binding sites, supported at the atomic level by their co-crystal structure bound to DNA, revealing a direct interaction between the two factors and induced DNA bending. Complex interdependent binding mechanisms reveal tightly regulated TF genomic distribution and define a combinatorial logic for heterotypic TF regulation of differentiation.


Asunto(s)
Factor de Transcripción GATA4/metabolismo , Proteínas de Homeodominio/metabolismo , Miocardio/citología , Organogénesis , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Cristalografía por Rayos X , Embrión de Mamíferos/metabolismo , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/genética , Ratones , Ratones Transgénicos , Modelos Moleculares , Miocardio/metabolismo , Regiones Promotoras Genéticas , Dominios y Motivos de Interacción de Proteínas , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética
2.
Cell ; 160(6): 1072-86, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25768904

RESUMEN

The mechanisms by which transcription factor haploinsufficiency alters the epigenetic and transcriptional landscape in human cells to cause disease are unknown. Here, we utilized human induced pluripotent stem cell (iPSC)-derived endothelial cells (ECs) to show that heterozygous nonsense mutations in NOTCH1 that cause aortic valve calcification disrupt the epigenetic architecture, resulting in derepression of latent pro-osteogenic and -inflammatory gene networks. Hemodynamic shear stress, which protects valves from calcification in vivo, activated anti-osteogenic and anti-inflammatory networks in NOTCH1(+/+), but not NOTCH1(+/-), iPSC-derived ECs. NOTCH1 haploinsufficiency altered H3K27ac at NOTCH1-bound enhancers, dysregulating downstream transcription of more than 1,000 genes involved in osteogenesis, inflammation, and oxidative stress. Computational predictions of the disrupted NOTCH1-dependent gene network revealed regulatory nodes that, when modulated, restored the network toward the NOTCH1(+/+) state. Our results highlight how alterations in transcription factor dosage affect gene networks leading to human disease and reveal nodes for potential therapeutic intervention.


Asunto(s)
Epigénesis Genética , Redes Reguladoras de Genes , Receptor Notch1/genética , Células Endoteliales/metabolismo , Femenino , Haploinsuficiencia , Código de Histonas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Inflamación/metabolismo , Masculino , Osteogénesis , Linaje , Receptor Notch1/metabolismo , Estrés Mecánico , Transcripción Genética
3.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33758101

RESUMEN

Among the large, diverse set of mammalian long noncoding RNAs (lncRNAs), long noncoding primary microRNAs (lnc-pri-miRNAs) are those that host miRNAs. Whether lnc-pri-miRNA loci have important biological function independent of their cognate miRNAs is poorly understood. From a genome-scale lncRNA screen, lnc-pri-miRNA loci were enriched for function in cell proliferation, and in glioblastoma (i.e., GBM) cells with DGCR8 or DROSHA knockdown, lnc-pri-miRNA screen hits still regulated cell growth. To molecularly dissect the function of a lnc-pri-miRNA locus, we studied LOC646329 (also known as MIR29HG), which hosts the miR-29a/b1 cluster. In GBM cells, LOC646329 knockdown reduced miR-29a/b1 levels, and these cells exhibited decreased growth. However, genetic deletion of the miR-29a/b1 cluster (LOC646329-miR29Δ) did not decrease cell growth, while knockdown of LOC646329-miR29Δ transcripts reduced cell proliferation. The miR-29a/b1-independent activity of LOC646329 corresponded to enhancer-like activation of a neighboring oncogene (MKLN1), regulating cell propagation. The LOC646329 locus interacts with the MKLN1 promoter, and antisense oligonucleotide knockdown of the lncRNA disrupts these interactions and reduces the enhancer-like activity. More broadly, analysis of genome-wide data from multiple human cell types showed that lnc-pri-miRNA loci are significantly enriched for DNA looping interactions with gene promoters as well as genomic and epigenetic characteristics of transcriptional enhancers. Functional studies of additional lnc-pri-miRNA loci demonstrated cognate miRNA-independent enhancer-like activity. Together, these data demonstrate that lnc-pri-miRNA loci can regulate cell biology via both miRNA-dependent and miRNA-independent mechanisms.


Asunto(s)
Proliferación Celular/genética , Sitios Genéticos , ARN Largo no Codificante/metabolismo , Apoptosis/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , RNA-Seq
4.
J Virol ; 95(6)2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33361422

RESUMEN

DNA damage-inducible transcript 3 (DDIT3) plays important roles in endoplasmic reticulum (ER) stress-induced apoptosis and autophagy, but its role in innate immunity is not clear. Here, we report that DDIT3 inhibits the antiviral immune response during bovine viral diarrhea virus (BVDV) infection by targeting mitochondrial antiviral signaling (MAVS) in Madin-Darby bovine kidney (MDBK) cells and in mice. BVDV infection induced high DDIT3 mRNA and protein expression. DDIT3 overexpression inhibited type I interferon (IFN-I) and IFN-stimulated gene production, thereby promoting BVDV replication, while DDIT3 knockdown promoted the antiviral innate immune response to suppress viral replication. DDIT3 promoted NF-κB-dependent ovarian tumor (OTU) deubiquitinase 1 (OTUD1) expression. Furthermore, OTUD1 induced upregulation of the E3 ubiquitin ligase Smurf1 by deubiquitinating Smurf1, and Smurf1 degraded MAVS in MDBK cells in a ubiquitination-dependent manner, ultimately inhibiting IFN-I production. Moreover, knocking out DDIT3 promoted the antiviral innate immune response to reduce BVDV replication and pathological changes in mice. These findings provide direct insights into the molecular mechanisms by which DDIT3 inhibits IFN-I production by regulating MAVS degradation.IMPORTANCE Extensive studies have demonstrated roles of DDIT3 in apoptosis and autophagy during viral infection. However, the role of DDIT3 in innate immunity remains largely unknown. Here, we show that DDIT3 is positively regulated in bovine viral diarrhea virus (BVDV)-infected Madin-Darby bovine kidney (MDBK) cells and could significantly enhance BVDV replication. Importantly, DDIT3 induced OTU deubiquitinase 1 (OTUD1) expression by activating the NF-κB signaling pathway, thus increasing intracellular Smurf1 protein levels to degrade MAVS and inhibit IFN-I production during BVDV infection. Together, these results indicate that DDIT3 plays critical roles in host innate immunity repression and viral infection facilitation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Virus de la Diarrea Viral Bovina Tipo 1/fisiología , Inmunidad Innata , Factor de Transcripción CHOP/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Replicación Viral , Animales , Antivirales/antagonistas & inhibidores , Antivirales/inmunología , Bovinos , Virus de la Diarrea Viral Bovina Tipo 1/patogenicidad , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Interferón Tipo I/antagonistas & inhibidores , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Ratones , FN-kappa B/metabolismo , Transducción de Señal , Factor de Transcripción CHOP/deficiencia , Factor de Transcripción CHOP/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteasas Ubiquitina-Específicas/genética , Ubiquitinación
5.
Virol J ; 19(1): 209, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482293

RESUMEN

For viral diseases, vaccination with live attenuated vaccine (LAV) is one of the most effective means for fighting the diseases. However, LAV occasionally overflows from vaccinated individuals circulate in the population with unforeseen consequences. Currently, SARS-CoV-2 LAVs are undergoing clinical trials. In this study, we found that the viruses isolated from Indian SARS CoV-2 infected persons may be candidate LAV-derived strains, indicating the risk of SARS-CoV-2 LAV spillover from vaccinated persons, increasing the complexity of SARS-CoV-2 detection. In addition, the property of frequent recombination of SARS-CoV-2 increases the chance of LAV virulence reversion. Therefore, how to distinguish the LAV viruses from the wild strain and how to avoid the recombination of the circulating vaccine strain and the wild strain are the challenges currently faced by SARS CoV-2 LAV development.


Asunto(s)
COVID-19 , Vacunas , Humanos , SARS-CoV-2/genética , COVID-19/prevención & control
6.
J Am Chem Soc ; 143(22): 8278-8294, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-33999619

RESUMEN

Nanocrystalline anatase TiO2 is a robust model anode for Li insertion in batteries. The influence of nanocrystal size on the equilibrium potential and kinetics of Li insertion is investigated with in operando spectroelectrochemistry of thin film electrodes. Distinct visible and infrared responses correlate with Li insertion and electron accumulation, respectively, and these optical signals are used to deconvolute bulk Li insertion from other electrochemical responses, such as double-layer capacitance, pseudocapacitance, and electrolyte leakage. Electrochemical titration and phase-field simulations reveal that a difference in surface energies between anatase and lithiated phases of TiO2 systematically tunes the Li-insertion potentials with the particle size. However, the particle size does not affect the kinetics of Li insertion in ensemble electrodes. Rather, the Li-insertion rates depend on the applied overpotential, electrolyte concentration, and initial state of charge. We conclude that Li diffusivity and phase propagation are not rate limiting during Li insertion in TiO2 nanocrystals. Both of these processes occur rapidly once the transformation between the low-Li anatase and high-Li orthorhombic phases begins in a particle. Instead, discontinuous kinetics of Li accumulation in TiO2 particles prior to the phase transformations limits (dis)charging rates. We demonstrate a practical means to deconvolute the nonequilibrium charging behavior in nanocrystalline electrodes through a combination of colloidal synthesis, phase field simulations, and spectroelectrochemistry.

7.
Liver Int ; 41(8): 1879-1883, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34008271

RESUMEN

Recurrent primary biliary cholangitis (rPBC) is frequent following liver transplantation and associated with increased morbidity and mortality. It has been argued that rPBC behaves like an infectious disease because more potent immunosuppression with tacrolimus is associated with earlier and more severe recurrence. Prophylactic ursodeoxycholic acid is an established therapeutic option to prevent rPBC, whereas the role of second line therapies, such as obeticholic acid and bezafibrate in rPBC, remains largely unexplored. To address the hypothesis that a human betaretrovirus plays a role in the development of PBC, we have tested antiretroviral therapy in vitro and conducted randomised controlled trials showing improvements in hepatic biochemistry. Herein, we describe the utility of combination antiretroviral therapy to manage rPBC in two patients treated with open label tenofovir/emtricitabine-based regimens in combination with either lopinavir or raltegravir. Both patients experienced sustained biochemical and histological improvement with treatment, but the antiretroviral therapy was associated with side effects.


Asunto(s)
Colangitis , Infecciones por VIH , Cirrosis Hepática Biliar , Trasplante de Hígado , Antirretrovirales/uso terapéutico , Colangitis/tratamiento farmacológico , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Humanos , Cirrosis Hepática Biliar/tratamiento farmacológico , Ácido Ursodesoxicólico/uso terapéutico
8.
Mol Cell ; 52(3): 314-24, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24207025

RESUMEN

Lysine acetylation regulates transcription by targeting histones and nonhistone proteins. Here we report that the central regulator of transcription, RNA polymerase II, is subject to acetylation in mammalian cells. Acetylation occurs at eight lysines within the C-terminal domain (CTD) of the largest polymerase subunit and is mediated by p300/KAT3B. CTD acetylation is specifically enriched downstream of the transcription start sites of polymerase-occupied genes genome-wide, indicating a role in early stages of transcription initiation or elongation. Mutation of lysines or p300 inhibitor treatment causes the loss of epidermal growth-factor-induced expression of c-Fos and Egr2, immediate-early genes with promoter-proximally paused polymerases, but does not affect expression or polymerase occupancy at housekeeping genes. Our studies identify acetylation as a new modification of the mammalian RNA polymerase II required for the induction of growth factor response genes.


Asunto(s)
Histonas/genética , Lisina/genética , ARN Polimerasa II/metabolismo , Transcripción Genética , Acetilación , Animales , Proteína 2 de la Respuesta de Crecimiento Precoz/biosíntesis , Células Madre Embrionarias/citología , Regulación de la Expresión Génica , Genes fos/genética , Histonas/metabolismo , Humanos , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
9.
Nature ; 512(7515): 449-52, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25164756

RESUMEN

Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal 'arms', and centromeres distributed along their lengths. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Cromatina/genética , Cromatina/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Animales , Línea Celular , Centrómero/genética , Centrómero/metabolismo , Cromatina/química , Ensamble y Desensamble de Cromatina/genética , Replicación del ADN/genética , Elementos de Facilitación Genéticos/genética , Epigénesis Genética , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Anotación de Secuencia Molecular , Lámina Nuclear/metabolismo , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas/genética , Especificidad de la Especie
10.
Development ; 142(8): 1418-30, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25813539

RESUMEN

The interplay between different levels of gene regulation in modulating developmental transcriptional programs, such as histone modifications and chromatin remodeling, is not well understood. Here, we show that the chromatin remodeling factor Brg1 is required for enhancer activation in mesoderm induction. In an embryonic stem cell-based directed differentiation assay, the absence of Brg1 results in a failure of cardiomyocyte differentiation and broad deregulation of lineage-specific gene expression during mesoderm induction. We find that Brg1 co-localizes with H3K27ac at distal enhancers and is required for robust H3K27 acetylation at distal enhancers that are activated during mesoderm induction. Brg1 is also required to maintain Polycomb-mediated repression of non-mesodermal developmental regulators, suggesting cooperativity between Brg1 and Polycomb complexes. Thus, Brg1 is essential for modulating active and repressive chromatin states during mesoderm lineage commitment, in particular the activation of developmentally important enhancers. These findings demonstrate interplay between chromatin remodeling complexes and histone modifications that, together, ensure robust and broad gene regulation during crucial lineage commitment decisions.


Asunto(s)
ADN Helicasas/metabolismo , Elementos de Facilitación Genéticos/fisiología , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Linaje de la Célula , Cromatina/metabolismo , ADN Helicasas/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos/genética , Silenciador del Gen/fisiología , Histonas/metabolismo , Humanos , Mesodermo/citología , Mesodermo/metabolismo , Mutación , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/genética , Proteínas del Grupo Polycomb/metabolismo , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacología , Factores de Transcripción/genética
11.
Development ; 141(23): 4610-7, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25359725

RESUMEN

Maintenance of vascular integrity is required for embryogenesis and organ homeostasis. However, the gene expression programs that stabilize blood vessels are poorly understood. Here, we show that the histone methyltransferase Ezh2 maintains integrity of the developing vasculature by repressing a transcriptional program that activates expression of Mmp9. Inactivation of Ezh2 in developing mouse endothelium caused embryonic lethality with compromised vascular integrity and increased extracellular matrix degradation. Genome-wide approaches showed that Ezh2 targets Mmp9 and its activators Fosl1 and Klf5. In addition, we uncovered Creb3l1 as an Ezh2 target that directly activates Mmp9 gene expression in the endothelium. Furthermore, genetic inactivation of Mmp9 rescued vascular integrity defects in Ezh2-deficient embryos. Thus, epigenetic repression of Creb3l1, Fosl1, Klf5 and Mmp9 by Ezh2 in endothelial cells maintains the integrity of the developing vasculature, potentially linking this transcriptional network to diseases with compromised vascular integrity.


Asunto(s)
Vasos Sanguíneos/embriología , Represión Epigenética/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Complejo Represivo Polycomb 2/metabolismo , Transducción de Señal/fisiología , Animales , Benzotiazoles , Western Blotting , Inmunoprecipitación de Cromatina , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Cartilla de ADN/genética , Diaminas , Proteína Potenciadora del Homólogo Zeste 2 , Represión Epigenética/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Hibridación in Situ , Factores de Transcripción de Tipo Kruppel , Luciferasas , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Microscopía Electrónica de Transmisión , Proteínas del Tejido Nervioso/metabolismo , Compuestos Orgánicos , Complejo Represivo Polycomb 2/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Quinolinas , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN
12.
BMC Evol Biol ; 15: 35, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25887984

RESUMEN

BACKGROUND: RPB1, the largest subunit of RNA polymerase II, contains a highly modifiable C-terminal domain (CTD) that consists of variations of a consensus heptad repeat sequence (Y1S2P3T4S5P6S7). The consensus CTD repeat motif and tandem organization represent the ancestral state of eukaryotic RPB1, but across eukaryotes CTDs show considerable diversity in repeat organization and sequence content. These differences may reflect lineage-specific CTD functions mediated by protein interactions. Mammalian CTDs contain eight non-consensus repeats with a lysine in the seventh position (K7). Posttranslational acetylation of these sites was recently shown to be required for proper polymerase pausing and regulation of two growth factor-regulated genes. RESULTS: To investigate the origins and function of RPB1 CTD acetylation (acRPB1), we computationally reconstructed the evolution of the CTD repeat sequence across eukaryotes and analyzed the evolution and function of genes dysregulated when acRPB1 is disrupted. Modeling the evolutionary dynamics of CTD repeat count and sequence content across diverse eukaryotes revealed an expansion of the CTD in the ancestors of Metazoa. The new CTD repeats introduced the potential for acRPB1 due to the appearance of distal repeats with lysine at position seven. This was followed by a further increase in the number of lysine-containing repeats in developmentally complex clades like Deuterostomia. Mouse genes enriched for acRPB1 occupancy at their promoters and genes with significant expression changes when acRPB1 is disrupted are enriched for several functions, such as growth factor response, gene regulation, cellular adhesion, and vascular development. Genes occupied and regulated by acRPB1 show significant enrichment for evolutionary origins in the early history of eukaryotes through early vertebrates. CONCLUSIONS: Our combined functional and evolutionary analyses show that RPB1 CTD acetylation was possible in the early history of animals, and that the K7 content of the CTD expanded in specific developmentally complex metazoan lineages. The functional analysis of genes regulated by acRPB1 highlight functions involved in the origin of and diversification of complex Metazoa. This suggests that acRPB1 may have played a role in the success of animals.


Asunto(s)
Evolución Molecular , Lisina/metabolismo , Mamíferos/genética , ARN Polimerasa II/metabolismo , Acetilación , Animales , Adhesión Celular , Procesos de Crecimiento Celular , Regulación de la Expresión Génica , Humanos , Mamíferos/metabolismo , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , ARN Polimerasa II/química , Vertebrados/genética , Vertebrados/metabolismo
13.
EBioMedicine ; 91: 104552, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37037165

RESUMEN

BACKGROUND: Long-COVID (LC) encompasses diverse symptoms lasting months after the initial SARS-CoV-2 infection. Symptoms can be debilitating and affect the quality of life of individuals with LC and their families. Although the symptoms of LC are well described, the aetiology of LC remains unclear, and consequently, patients may be underdiagnosed. Identification of LC specific biomarkers is therefore paramount for the diagnosis and clinical management of the syndrome. This scoping review describes the molecular and cellular biomarkers that have been identified to date with potential use for diagnosis or prediction of LC. METHODS: This review was conducted using the Joanna Briggs Institute (JBI) Methodology for Scoping Reviews. A search was executed in the MEDLINE and EMBASE databases, as well as in the grey literature for original studies, published until October 5th, 2022, reporting biomarkers identified in participants with LC symptoms (from all ages, ethnicities, and sex), with a previous infection of SARS-CoV-2. Non-English studies, cross-sectional studies, studies without a control group, and pre-prints were excluded. Two reviewers independently evaluated the studies, extracted population data and associated biomarkers. FINDINGS: 23 cohort studies were identified, involving 2163 LC patients [median age 51.8 years, predominantly female sex (61.10%), white (75%), and non-vaccinated (99%)]. A total of 239 candidate biomarkers were identified, consisting mainly of immune cells, immunoglobulins, cytokines, and other plasma proteins. 19 of the 239 candidate biomarkers identified were evaluated by the authors, by means of receiver operating characteristic (ROC) curves. INTERPRETATION: Diverse cellular and molecular biomarkers for LC have been proposed. Validation of candidate biomarkers in independent samples should be prioritized. Modest reported performance (particularly in larger studies) suggests LC may encompass many distinct aetiologies, which should be explored e.g., by stratifying by symptom clusters and/or sex. FUNDING: Dr. Tebbutt has received funding from the Canadian Institutes of Health Research (177747) to conduct this work. The funding source was not involved in this scoping review, or in the decision to submit this manuscript for publication.


Asunto(s)
COVID-19 , Humanos , Femenino , Persona de Mediana Edad , Masculino , COVID-19/diagnóstico , COVID-19/epidemiología , SARS-CoV-2 , Síndrome Post Agudo de COVID-19 , Estudios Transversales , Calidad de Vida , Canadá , Biomarcadores
14.
Cell Mol Immunol ; 20(12): 1457-1471, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37978243

RESUMEN

The G protein-coupled receptor ADGRE5 (CD97) binds to various metabolites that play crucial regulatory roles in metabolism. However, its function in the antiviral innate immune response remains to be determined. In this study, we report that CD97 inhibits virus-induced type-I interferon (IFN-I) release and enhances RNA virus replication in cells and mice. CD97 was identified as a new negative regulator of the innate immune receptor RIG-I, and RIG-1 degradation led to the suppression of the IFN-I signaling pathway. Furthermore, overexpression of CD97 promoted the ubiquitination of RIG-I, resulting in its degradation, but did not impact its mRNA expression. Mechanistically, CD97 upregulates RNF125 expression to induce RNF125-mediated RIG-I degradation via K48-linked ubiquitination at Lys181 after RNA virus infection. Most importantly, CD97-deficient mice are more resistant than wild-type mice to RNA virus infection. We also found that sanguinarine-mediated inhibition of CD97 effectively blocks VSV and SARS-CoV-2 replication. These findings elucidate a previously unknown mechanism through which CD97 negatively regulates RIG-I in the antiviral innate immune response and provide a molecular basis for the development of new therapeutic strategies and the design of targeted antiviral agents.


Asunto(s)
Infecciones por Virus ARN , Virus ARN , Animales , Ratones , Antivirales/farmacología , Proteína 58 DEAD Box/metabolismo , Inmunidad Innata , Receptores Acoplados a Proteínas G/metabolismo , Infecciones por Virus ARN/genética , Virus ARN/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
15.
Psychol Assess ; 34(5): 443-458, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35084891

RESUMEN

Pregnancy-related anxiety, a distinct anxiety characterized by pregnancy-specific concerns, has consistently been associated with adverse birth outcomes and obstetric and pediatric risk factors. Despite this, widespread screening for pregnancy-related anxiety has not been integrated into routine antenatal care likely due to the absence of a psychometrically sound screener. This study reports on the initial development of a brief screener derived from the 32-item pregnancy-related anxiety scale (PrAS). Three datasets (comprising pregnant women recruited online) were utilized in the development and evaluation of the PrAS screener (PrAS-Screener). Dataset one (N = 1,084) was used to derive two potential screeners from the PrAS using principal axis factoring (PAF). The factor structure of the models was evaluated using PAF and model fit assessed with confirmatory factor analysis (CFA) using datasets two (N = 638) and three (N = 581). The model comprised 15 items and five subscales was selected as the superior model. The selected model (i.e., PrAS-Screener) was evaluated for convergent and discriminant validity demonstrating higher correlations with similar measures and lower correlations with dissimilar measures and high internal consistency reliability (α = .93). The PrAS-Screener assesses the three core areas of pregnancy-related anxiety (childbirth, body image, baby concerns) but has the advantage of also assessing anxiety symptoms and medical staff concerns, an area integral to providing optimal antenatal care through trusted relationships with clinicians. Initial evidence indicates that the PrAS-Screener is promising as a brief and easy-to-administer screener suitable for use in routine antenatal care. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Asunto(s)
Ansiedad , Mujeres Embarazadas , Ansiedad/diagnóstico , Niño , Análisis Factorial , Femenino , Humanos , Embarazo , Psicometría , Reproducibilidad de los Resultados , Encuestas y Cuestionarios
16.
Vet Microbiol ; 257: 109096, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33940459

RESUMEN

Receptors for activated C kinase 1 (RACK1) could competitively combine with mitochondrial antiviral signaling protein (MAVS) to inhibit the type I interferon (IFN) signaling pathway during viral infection in vitro. However, whether RACK1 can degrade MAVS to enhance viral replication is still unknown. In this study, we found that bovine epidemic fever virus (BEFV) infection triggered the expression of RACK1. Overexpression of RACK1 promoted BEFV replication, while knockdown of RACK1 inhibited the replication of BEFV. Further research showed that RACK1 inhibited the type I IFN signaling pathway during BEFV infection by degrading MAVS, and RACK1 degraded MAVS via the ubiquitin-proteasome system. Mechanistically, RACK1 up-regulated the expression of E3 ubiquitin ligase STIP1 homology and U-box containing protein 1 (STUB1), thereby promoting the ubiquitination and degradation of MAVS. In addition, RACK1 degraded MAVS by enhancing the interaction between STUB1 and MAVS but not via its interaction with STUB1. Overall, our study reveals a novel mechanism by which RACK1 inhibits the type I IFN signaling pathway to BEFV infection through degradation of MAVS, thereby promoting viral infection. These findings provide a new perspective for the MAVS degradation regulated by RACK1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Virus de la Fiebre Efímera Bovina/fisiología , Inmunidad Innata , Receptores de Cinasa C Activada/genética , Ubiquitina-Proteína Ligasas/genética , Regulación hacia Arriba , Replicación Viral/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Bovinos , Línea Celular , Cricetinae , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Células HEK293 , Humanos , Interferón Tipo I/antagonistas & inhibidores , Interferón Tipo I/inmunología , Transducción de Señal/inmunología
17.
Singapore Med J ; 62(7): 353-358, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32211912

RESUMEN

INTRODUCTION: Injury is a significant cause of mortality and morbidity. We aimed to investigate which areas in Singapore have a significantly higher incidence of road traffic accidents (RTA) resulting in severe injuries (Tier 1), which is defined as an Injury Severity Score (ISS) greater than 15, and to develop a spatiotemporal model. METHODS: Data was obtained from the National Trauma Registry. The RTA locations were geomapped onto the Singapore map, and spatial statistical techniques were used to identify hotspots with the Getis-Ord Gi* algorithm. RESULTS: From 1 January 2013 to 31 December 2014, there were 35,673 people who were injured as a result of RTAs and 976 Tier 1 RTA victims. A total of 920 people were included in the geospatial analysis. Another 56 were involved in RTAs that did not occur within Singapore or had missing location data and thus were not included. 745 (81.0%) were discharged alive, whereas 175 (19.0%) did not survive to discharge (median ISS 38.00, interquartile range 30.00-48.00). Most of the Tier 1 RTA victims were motorcycle riders (50.1%, n = 461), pedestrians (21.8%, n = 201) and cyclists (9.9%, n = 91). The majority were male and aged 20-40 years, and there was a peak occurrence at 0600-0759 hours. Nine hotspots were identified (p < 0.01). CONCLUSION: Information from studying hotspots of RTAs, especially those resulting in severe injuries, can be used by multiple agencies to direct resources efficiently.


Asunto(s)
Peatones , Heridas y Lesiones , Accidentes de Tránsito , Adulto , Femenino , Humanos , Puntaje de Gravedad del Traumatismo , Masculino , Sistema de Registros , Singapur/epidemiología , Heridas y Lesiones/epidemiología , Adulto Joven
18.
BMC Genomics ; 11: 689, 2010 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21126370

RESUMEN

BACKGROUND: The orphan nuclear receptor TR4 (human testicular receptor 4 or NR2C2) plays a pivotal role in a variety of biological and metabolic processes. With no known ligand and few known target genes, the mode of TR4 function was unclear. RESULTS: We report the first genome-wide identification and characterization of TR4 in vivo binding. Using chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq), we identified TR4 binding sites in 4 different human cell types and found that the majority of target genes were shared among different cells. TR4 target genes are involved in fundamental biological processes such as RNA metabolism and protein translation. In addition, we found that a subset of TR4 target genes exerts cell-type specific functions. Analysis of the TR4 binding sites revealed that less than 30% of the peaks from any of the cell types contained the DR1 motif previously derived from in vitro studies, suggesting that TR4 may be recruited to the genome via interaction with other proteins. A bioinformatics analysis of the TR4 binding sites predicted a cis regulatory module involving TR4 and ETS transcription factors. To test this prediction, we performed ChIP-seq for the ETS factor ELK4 and found that 30% of TR4 binding sites were also bound by ELK4. Motif analysis of the sites bound by both factors revealed a lack of the DR1 element, suggesting that TR4 binding at a subset of sites is facilitated through the ETS transcription factor ELK4. Further studies will be required to investigate the functional interdependence of these two factors. CONCLUSIONS: Our data suggest that TR4 plays a pivotal role in fundamental biological processes across different cell types. In addition, the identification of cell type specific TR4 binding sites enables future studies of the pathways underlying TR4 action and its possible role in metabolic diseases.


Asunto(s)
Fenómenos Biológicos , Genoma Humano/genética , Receptores de Esteroides/metabolismo , Receptores de Hormona Tiroidea/metabolismo , Secuencia de Bases , Sitios de Unión , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Regulación de la Expresión Génica , Humanos , Modelos Genéticos , Datos de Secuencia Molecular , Nucleosomas/metabolismo , Reacción en Cadena de la Polimerasa , Unión Proteica/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Reproducibilidad de los Resultados
19.
Genome Biol ; 21(1): 83, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32234056

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) exhibit highly cell type-specific expression and function, making this class of transcript attractive for targeted cancer therapy. However, the vast majority of lncRNAs have not been tested as potential therapeutic targets, particularly in the context of currently used cancer treatments. Malignant glioma is rapidly fatal, and ionizing radiation is part of the current standard-of-care used to slow tumor growth in both adult and pediatric patients. RESULTS: We use CRISPR interference (CRISPRi) to screen 5689 lncRNA loci in human glioblastoma (GBM) cells, identifying 467 hits that modify cell growth in the presence of clinically relevant doses of fractionated radiation. Thirty-three of these lncRNA hits sensitize cells to radiation, and based on their expression in adult and pediatric gliomas, nine of these hits are prioritized as lncRNA Glioma Radiation Sensitizers (lncGRS). Knockdown of lncGRS-1, a primate-conserved, nuclear-enriched lncRNA, inhibits the growth and proliferation of primary adult and pediatric glioma cells, but not the viability of normal brain cells. Using human brain organoids comprised of mature neural cell types as a three-dimensional tissue substrate to model the invasive growth of glioma, we find that antisense oligonucleotides targeting lncGRS-1 selectively decrease tumor growth and sensitize glioma cells to radiation therapy. CONCLUSIONS: These studies identify lncGRS-1 as a glioma-specific therapeutic target and establish a generalizable approach to rapidly identify novel therapeutic targets in the vast non-coding genome to enhance radiation therapy.


Asunto(s)
Neoplasias Encefálicas/terapia , Sistemas CRISPR-Cas , Glioblastoma/terapia , ARN Largo no Codificante/antagonistas & inhibidores , Adulto , Astrocitos , Encéfalo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/radioterapia , Línea Celular Tumoral , Terapia Combinada , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/radioterapia , Humanos , Oligonucleótidos Antisentido , Organoides , Tolerancia a Radiación
20.
Sci Transl Med ; 12(542)2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32376769

RESUMEN

Death from sepsis in the neonatal period remains a serious threat for millions. Within 3 days of administration, bacille Calmette-Guérin (BCG) vaccination can reduce mortality from neonatal sepsis in human newborns, but the underlying mechanism for this rapid protection is unknown. We found that BCG was also protective in a mouse model of neonatal polymicrobial sepsis, where it induced granulocyte colony-stimulating factor (G-CSF) within hours of administration. This was necessary and sufficient to drive emergency granulopoiesis (EG), resulting in a marked increase in neutrophils. This increase in neutrophils was directly and quantitatively responsible for protection from sepsis. Rapid induction of EG after BCG administration also occurred in three independent cohorts of human neonates.


Asunto(s)
Sepsis Neonatal , Sepsis , Factor Estimulante de Colonias de Granulocitos , Hematopoyesis , Humanos , Recién Nacido , Sepsis/prevención & control , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA