Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Environ Sci (China) ; 126: 58-69, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36503784

RESUMEN

Co-exposure to heavy metal and antibiotic pollution might result in complexation and synergistic interactions, affecting rice growth and further exacerbating pollutant enrichment. Therefore, our study sought to clarify the influence of different Tetracycline (TC) and Cadmium(Cd) concentration ratios (both alone and combined) on rice growth, pollutant accumulation, and transportation during the tillering stage in hydroponic system. Surprisingly, our findings indicated that the interaction between TC and Cd could alleviate the toxic effects of TC/Cd on aerial rice structures and decrease pollutant burdens during root elongation. In contrast, TC and Cd synergistically promoted the accumulation of TC/Cd in rice roots. However, their interaction increased the accumulation of TC in roots while decreasing the accumulation of Cd when the toxicant doses increased. The strong affinity of rice to Cd promoted its upward transport from the roots, whereas the toxic effects of TC reduced TC transport. Therefore, the combined toxicity of the two pollutants inhibited their upward transport. Additionally, a low concentration of TC promoted the accumulation of Cd in rice mainly in the root tip. Furthermore, a certain dose of TC promoted the upward migration of Cd from the root tip. Laser ablation-inductively coupled plasma mass spectrometry demonstrated that Cd mainly accumulated in the epidermis and stele of the root, whereas Fe mainly accumulated in the epidermis, which inhibited the absorption and accumulation of Cd by the rice roots through the generation of a Fe plaque. Our findings thus provide insights into the effects of TC and Cd co-exposure on rice growth.


Asunto(s)
Contaminantes Ambientales , Compuestos Heterocíclicos , Oryza , Cadmio/toxicidad , Tetraciclina , Antibacterianos
2.
Sci Total Environ ; 811: 152283, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-34902411

RESUMEN

Tetracycline (TC), a widely used antibiotic, is frequently detected in soil environments. It has a strong tendency to form complexes with metals, including iron (oxyhydr)oxide. In this study, ferrihydrite (Fh), a representative iron oxyhydroxide of the iron plaques on the surface of plant roots, was chosen to study the contributions of iron oxyhydroxide on the environmental fate of TC in the rhizosphere environment. Fh adsorption isotherm of TC showed good fitting to the Freundlich model, and the Fh adsorption capacity of TC was found much larger than the other iron oxyhydroxide of high crystallinity. The adsorption mechanisms mainly included electrostatic interaction, H-bonding, and complexation. The results of FTIR and XPS spectra revealed that tricarbonylamide, dimethylamino, and the hydroxyl in the B ring of TC were mainly responsible for the complexation with Fh surface hydroxyl groups. Furthermore, it should be noted that the adsorbed TC on Fh could be degraded and the degradation kinetics of TC better fitted to the pseudo-second-order model. Fh could promote electron transfer from TC to Fe(III) on the Fh surface, which led to the degradation of TC and the formation of Fe(II) ions. The degradation pathways of TC mainly involved three reactions: hydroxylation, dealkylation, and deamination. This study provides mechanistic insights on TC-Fh interaction, which improves the understanding of TC fate in the rhizosphere environment.


Asunto(s)
Compuestos Férricos , Tetraciclina , Adsorción , Antibacterianos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA