Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Angew Chem Int Ed Engl ; 63(18): e202401605, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38363082

RESUMEN

The strategic design of solution-processable semiconducting polymers possessing both matched energy levels and elevated glass transition temperatures is of urgent importance in the progression of thermally robust n-i-p perovskite solar cells with efficiencies exceeding 25 %. In this work, we employed direct arylation polymerization to achieve the high-yield synthesis of three aza[5]helicene-derived copolymers with distinct HOMO energy levels and exceptional glass transition temperatures. Upon integration of these semiconducting polymers into formamidinium lead triiodide-based perovskite solar cells, marked disparities in photovoltaic parameters manifest, primarily stemming from variations in the electrical conductivity and film morphology of the hole transport layers. The p-A5HP-E-POZOD-E copolymer, featuring a main chain comprising alternating repeats of aza[5]helicene, ethylenedioxythiophene, phenoxazine, and ethylenedioxythiophene, attains an initial average efficiency of 25.5 %, markedly surpassing reference materials such as spiro-OMeTAD (23.0 %), PTAA (17.0 %), and P3HT (11.6 %). Notably, p-A5HP-E-POZOD-E exhibits a high cohesive energy density, resulting in enhanced Young's modulus and diminished external species diffusion coefficients, thereby conferring perovskite solar cells with exceptional 85 °C tolerance and operational stability.

2.
Plant Dis ; 105(5): 1522-1530, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33237845

RESUMEN

The prevalence and destructiveness of anthracnose, caused by Colletotrichum scovillei, in pepper production regions seriously affects pepper yield and quality. Mefentrifluconazole, the first of the isopropanol-azole subgroup of triazole fungicides, was introduced for the control of pepper anthracnose. However, the growth characteristics of pepper fruit and rapid spread of anthracnose suggest that the fungicide application method must be optimized to enhance fungicide efficacy. The sensitivity of C. scovillei to mefentrifluconazole was determined by mycelial growth and germ tube elongation assays using 157 single-spore isolates with mean 50% effective concentration values of 0.462 ± 0.138 and 0.359 ± 0.263 mg/liter, respectively. The in vivo data also showed that mefentrifluconazole had favorable protective and curative effects against pepper anthracnose. Mefentrifluconazole significantly affected C. scovillei infection on pepper by reducing appressorium formation and sporulation, shriveling spores and germ tubes, and causing the abnormal development of appressoria and conidiophores. Mefentrifluconazole could move acropetally, horizontally, and basipetally in pepper plants. Compared with a knapsack sprayer, mefentrifluconazole applied by mist sprayer exhibited significantly better activity against pepper anthracnose. Additionally, as the spray volume increased from 45 to 150 liters/ha, the control efficacy of mefentrifluconazole first increased and then tended to be steady, with an optimal spray volume of 90 liters/ha. The difference in disease control efficacy was related to the deposition and droplet distribution of mefentrifluconazole on the pepper fruit. These results provide scientific guidance for the application of mefentrifluconazole in pepper fields and improved fungicide utilization.


Asunto(s)
Colletotrichum , Fungicidas Industriales , Fluconazol/análogos & derivados , Fungicidas Industriales/farmacología , Enfermedades de las Plantas
3.
Ecotoxicol Environ Saf ; 187: 109849, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31677571

RESUMEN

Harmonia axyridis is an important predator of several pest species and is part of many Integrated Pest Management (IPM) programs. To assess the risks of pesticide application to H. axyridis, we studied the effects of sulfoxaflor on H. axyridis larvae. At 72 h after treatment, the acute toxicity LR50 was 311.9476 g a. i. ha-1 by the residual contact method. This result indicated low-contact toxicity against second-instar H. axyridis larvae. The LR50 of the F1 generation decreased from 69.96 to 36.41 g a. i. ha-1 in a long-term toxicity test. The daily hazard quotient (HQ) for H. axyridis larvae lowered the safety threshold value in the first 5 d. However, the HQ values were greater than 2 during days 6-18 after sulfoxaflor treatments. We determined the No Observed Effect Application Rates of sulfoxaflor on the survival (<11.25 g a. i. ha-1), duration of larval and pupal stages (45 g a. i. ha-1), adult stage (90 g a. i. ha-1), total pre-oviposition period, adult pre-oviposition period (45 g a. i. ha-1), and reproduction (11.25 g a. i. ha-1). Pupation, adult emergence, and eggs counts of H. axyridis were reduced after sulfoxaflor treatments. The predation ability and population demography parameters were significantly impaired by higher application rates. At 90 g a. i. ha-1 or less, sulfoxaflor was slightly harmful to H. axyridis but a rate of 180 g a. i. ha-1 was moderately harmful. These results demonstrated that sulfoxaflor is harmful to H. axyridis when applied at high application rates.


Asunto(s)
Escarabajos/efectos de los fármacos , Larva/efectos de los fármacos , Residuos de Plaguicidas/toxicidad , Pupa/efectos de los fármacos , Piridinas/toxicidad , Compuestos de Azufre/toxicidad , Animales , Escarabajos/fisiología , Relación Dosis-Respuesta a Droga , Femenino , Larva/fisiología , Dosificación Letal Mediana , Control de Plagas , Conducta Predatoria/efectos de los fármacos , Pupa/fisiología , Reproducción/efectos de los fármacos , Pruebas de Toxicidad
4.
Ecotoxicol Environ Saf ; 182: 109445, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31330408

RESUMEN

In this study, a new, high-efficiency and sensitive method was determined to simultaneous analyze the residue of pyraclostrobin, picoxystrobin and its metabolite BF-500-3 in pepper fruit using modified QuEChERS pretreatment combined with ultra performance liquid chromatography-tandem mass spectrometry. The clean-up steps of QuEChERS procedure were optimized using the chemometric tools. Models of stepwise regression and surface response demonstrated that the optimal sorbent mixtures were 40 mg nano-zirconia + 10 mg C18 for pyraclostrobin and picoxystrobin and 30 mg nano-zirconia + 20 mg C18 for BF-500-3. The optimized purification procedures provided satisfactory recoveries for all tested fungicides with rates between 91% and 107% and relative standard deviations between 3.7% and 9.6%. The limits of detection and quantification were in the range of 0.0360-0.272 µg/kg and 0.120-0.910 µg/kg. Based on this method, the dissipation of pyraclostrobin, picoxystrobin and its metabolite in pepper fruit were determined under field conditions. Pyraclostrobin and picoxystrobin degraded rapidly with half-lives of 5.53-7.02 and 5.97-7.82 days and 5.09 and 5.68 days in 2016 and 2017, respectively. The residue levels of BF-500-3 increased first and then decreased. The terminal residues of all fungicides were below the maximum residue limits (MRLs). This research can not only provide guidance for the reasonable usage of pyraclostrobin and picoxystrobin in agriculture but also give a reference for the Chinese government to establish the MRL for pyraclostrobin in pepper.


Asunto(s)
Fungicidas Industriales/análisis , Residuos de Plaguicidas/análisis , Estrobilurinas/análisis , Verduras/química , Agricultura , Cromatografía Liquida/métodos , Frutas/química , Espectrometría de Masas en Tándem/métodos
5.
Plant Dis ; 103(7): 1657-1664, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31082320

RESUMEN

Adding adjuvants improved the affinity of fungicide droplets to cucumber leaves infected with powdery mildew (Podosphaera xanthii) and subsequent efficacy of fungicide treatments in reducing the disease. The affinity of oil adjuvants was quantified by adhesional tension and "work of adhesion". Oil adjuvant-fungicide mixtures were applied to plants in field experiments to evaluate their effectiveness in disease prevention. Both the adhesional tension and work of adhesion of the adjuvants at selected concentrations increased on powdery-mildew-infected cucumber leaves more than on healthy cucumber leaves. The adjuvant GY-Tmax (GYT) displayed the best surface activity or "surfactivity" in enhancing the affinity and adherence of droplets to powdery-mildew-infected cucumber leaves, while epoxidized soybean oil (ESO), methyl oleate, and biodiesel exhibited much lower effects in terms of the surface tension, contact angle, adhesional tension, and work of adhesion. Field experiments determined that the combination of GYT at 1,000 mg liter-1 and pyraclostrobin (150 g a.i. ha-1) was most effective (91.52%) in controlling cucumber powdery mildew. Pyraclostrobin with ESO was also highly effective (ranging from 77.54 to 89.65%). The addition of oil adjuvants, especially GYT and ESO, to fungicide applications can be an effective strategy to enhance the efficacy of pesticides in controlling plant diseases by modifying the affinity of fungicide droplets to symptomatic leaves.


Asunto(s)
Ascomicetos , Cucumis sativus , Aceites , Estrobilurinas , Ascomicetos/efectos de los fármacos , Ascomicetos/fisiología , Fungicidas Industriales/farmacología , Aceites/farmacología , Hojas de la Planta/microbiología , Estrobilurinas/farmacología
6.
Plant Dis ; 103(1): 34-43, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30388064

RESUMEN

Anthracnose, caused by Colletotrichum species, can severely infect the fruits and leaves of more than 30 plants and thus results in great yield and quality losses. To identify the major Colletotrichum species infecting walnut fruits, strawberry leaves, grape fruits, and tea leaves in Shandong Province, China, 101 strains were collected and isolated. The morphological characteristics of all isolates were observed, and multilocus phylogenetic analyses (ITS, GAPDH, ACT, TUB2, CAL, CHS-1, and HIS3) were conducted on the representative isolates. The strains were identified as five Colletotrichum species, namely, C. gloeosporioides sensu stricto, C. fructicola, C. camelliae, C. acutatum sensu stricto, and C. viniferum. Among them, C. viniferum was reported for the first time from walnut fruits and strawberry leaves in Shandong Province, China. Corresponding leaves or fruits were used as a model to clarify the pathogenicity of these isolates. The results showed that C. fructicola obtained from strawberry leaves was more aggressive than C. viniferum. All of the isolates obtained from various hosts were highly sensitive to pyraclostrobin, difenoconazole, fludioxonil, tebuconazole, pyrisoxazole, and tetramycin in terms of mycelial growth inhibition (EC50 values of 0.07 to 1.63 mg/liter). The fastest mycelial growth was observed in the temperature range of 25-28°C for all isolates. In addition, anthracnose symptoms occur frequently under these conditions. Overall, this study can improve the understanding of Colletotrichum species causing anthracnose in walnut fruits, strawberry leaves, grape fruits, and tea leaves and can provide a solid foundation for the effective control of this disease in different hosts.


Asunto(s)
Colletotrichum , Fungicidas Industriales , China , ADN de Hongos , Filogenia , Enfermedades de las Plantas
7.
Pestic Biochem Physiol ; 147: 51-58, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29933993

RESUMEN

Tetramycin, a novel polyene macrolide antibiotic, has strong activity against a broad spectrum of fungi and may have potential uses in future agricultural applications. Thus, the antifungal activity and biochemical action of tetramycin on Colletotrichum scovillei were investigated in this study. The experimental results indicated that tetramycin had strong inhibitory activity against the mycelial growth, spore germination and germ tube elongation of C. scovillei. The baseline sensitivity curves were unimodal, with mean EC50 values of 1.98 ±â€¯0.078 µg/mL and 0.003 ±â€¯0.005 µg/mL for mycelial growth and spore germination inhibition, respectively. Tetramycin also inhibited the germination of spores and formation of appressoria. After tetramycin treatment, the edge of the mycelial diaphragm showed protuberances, with decreased offshoots at the top. Additionally, disruption of the membrane was detected through an increase in membrane permeability, leakage of sugars and a reduction in the ergosterol content. Tetramycin effectively controlled C. scovillei on detached pepper fruits. These results will contribute to our evaluation of the potential of tetramycin for successful management of pepper anthracnose and to our understanding of the possible biochemical action of tetramycin against C. scovillei.


Asunto(s)
Antibacterianos/toxicidad , Colletotrichum/efectos de los fármacos , Fungicidas Industriales/toxicidad , Macrólidos/toxicidad , Capsicum/microbiología , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Colletotrichum/crecimiento & desarrollo , Colletotrichum/metabolismo , Productos Agrícolas/microbiología , Ergosterol/metabolismo , Pruebas de Sensibilidad Microbiana , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/fisiología
9.
Curr Med Sci ; 44(3): 545-553, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38900386

RESUMEN

OBJECTIVE: Abnormal expression of T-lymphokine-activated killer cell-originated protein kinase (TOPK) was reported to be closely related to the resistance of prostate cancer to radiotherapy and to targeted drug resistance in lung cancer. However, the role of TOPK inhibition in enhancing radiosensitivity of colorectal cancer (CRC) cells is unclear. This study aimed to evaluate the radiosensitization of TOPK knockdown in CRC cells. METHODS: The expression of TOPK was detected in CRC tissues by immunohistochemistry, and the effect of TOPK knockdown was detected in CRC cells by Western blotting. CCK-8 and clonogenic assays were used to detect the growth and clonogenic ability of CRC cells after TOPK knockdown combined with radiotherapy in CRC cells. Furthermore, proteomic analysis showed that the phosphorylation of TOPK downstream proteins changed after radiotherapy. DNA damage was detected by the comet assay. Changes in the DNA damage response signaling pathway were analyzed by Western blotting, and apoptosis was detected by flow cytometry. RESULTS: The expression of TOPK was significantly greater in CRC tissues at grades 2-4 than in those at grade 1. After irradiation, CRC cells with genetically silenced TOPK had shorter comet tails and reduced expression levels of DNA damage response-associated proteins, including phospho-cyclin-dependent kinase 1 (p-CDK1), phospho-ataxia telangiectasia-mutated (p-ATM), poly ADP-ribose polymerase (PARP), and meiotic recombination 11 homolog 1 (MRE11). CONCLUSIONS: TOPK was overexpressed in patients with moderately to poorly differentiated CRC. Moreover, TOPK knockdown significantly enhanced the radiosensitivity of CRC cells by reducing the DNA damage response.


Asunto(s)
Apoptosis , Neoplasias Colorrectales , Daño del ADN , Tolerancia a Radiación , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/radioterapia , Neoplasias Colorrectales/patología , Daño del ADN/efectos de la radiación , Tolerancia a Radiación/genética , Tolerancia a Radiación/efectos de los fármacos , Línea Celular Tumoral , Masculino , Técnicas de Silenciamiento del Gen , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Transducción de Señal , Femenino , Fosforilación , Quinasas de Proteína Quinasa Activadas por Mitógenos
10.
Sheng Wu Gong Cheng Xue Bao ; 39(7): 2839-2860, 2023 Jul 25.
Artículo en Zh | MEDLINE | ID: mdl-37584135

RESUMEN

The present study aims to explore the genetic diversity of germplasm resources of Chrysanthemum×morifolium (hereinafter, C.×morifolium) at the molecular level and to establish a fingerprint database of C.×morifolium varieties. We employed 12 pairs of primers with high levels of polymorphism, clear bands, and high degrees of reproducibility to analyze the SSR molecular markers and genetic diversity of 91 C.×morifolium materials and 14 chrysanthemum- related materials. With regard to constructing the fingerprints of the tested materials, we chose 9 pairs of core primers. The findings revealed that 12 primer pairs detected 104 alleles in 105 samples, ranging from 2 to 26. The average number of observed alleles (Na) per site was 9.25. The average number of effective alleles (Ne) per site was 2.745 6, with its range being 1.276 0 to 4.742 5. Shannon genetic diversity index (I) values ranged between 0.513 3 and 2.239 9 (M=1.209 0). Nei's gene diversity index (H) ranged between 0.216 3 and 0.789 1 (M=0.578 0). The observed heterozygosity (Ho) ranged between 0.223 3 and 0.895 2 (M=0.557 5). The expected heterozygosity (He) ranged between 0.217 4 and 0.793 3 (M=0.580 8). The polymorphism information content (PIC) ranged between 0.211 5 and 0.774 0 (M=0.532 9). The genetic similarity (GS) ranged between 0.228 5 and 1.000 0 (M=0.608 3). Cluster analysis revealed that when the genetic distance (GD) equals to 0.30, the tested materials can be classified into 2 groups. When the GD equals to 0.27, the first group can be divided into 6 subgroups; accordingly, 105 tested materials can be divided into 7 subgroups. The cophenetic correlation test was carried out based on the cluster analysis, and the corresponding results showed that the cluster map correlated with the genetic similarity coefficient (r=0.952 73). According to the results of Structure population analysis, we obtained the optimal population number, with the true number of populations (K) being 3 and the population being divided concerning Q≥0.5. Three subgroups, i.e., Q1, Q2 and Q3, included 34, 33 and 28 germplasms, respectively, and the remaining 10 germplasms were identified as the mixed population. During the experiment, 9 pairs of core primers were screened among the total of 12 for a complete differentiation regarding 105 tested materials, and the fingerprints of 91 C.×morifolium materials and 14 chrysanthemum-related materials were further constructed. Overall, there were significant genetic differences and rich genetic diversity among C.×morifolium materials, which would shed light on the garden application and variety selection fields of C.×morifolium. The fingerprint database of 105 C.×morifolium varieties and chrysanthemum-related species may provide technical support for future research regarding the identification and screening system of C.×morifolium varieties.


Asunto(s)
Chrysanthemum , Variación Genética , Chrysanthemum/genética , Reproducibilidad de los Resultados , Repeticiones de Microsatélite/genética , Polimorfismo Genético , Biomarcadores , Filogenia
11.
Int J Biol Macromol ; 241: 124404, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37054854

RESUMEN

Copper acquisition and subsequent delivery to target proteins are essential for many biological processes. However, the cellular levels of this trace element must be controlled because of its potential toxicity. The COPT1 protein rich in potential metal-binding amino acids functions in high affinity copper uptake at the plasma membrane of Arabidopsis cells. The functional role of these putative metal-binding residues is largely unknown. Through truncations and site-directed mutagenesis, we identified His43, a single residue within the extracellular N-terminal domain as absolutely critical for copper uptake of COPT1. Substitution of this residue with leucine, methionine or cysteine almost inactivated transport function of COPT1, implying that His43 fails to serves as a copper ligand in the regulation of COPT1 activity. Deletion of all extracellular N-terminal metal-binding residues completely blocked copper-stimulated degradation but did not alter the subcellular distribution and multimerization of COPT1. Although mutation of His43 to alanine and serine retained the transporter activity in yeast cells, the mutant protein was unstable and degraded in the proteasome in Arabidopsis cells. Our results demonstrate a pivotal role for the extracellular residue His43 in high affinity copper transport activity, and suggest common molecular mechanisms for regulating both metal transport and protein stability of COPT1.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histidina/genética , Histidina/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas Transportadoras de Cobre/metabolismo , Cobre/química , Transportador de Cobre 1/metabolismo , Transporte Biológico , Estabilidad Proteica
12.
ACS Omega ; 8(24): 22121-22131, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37360474

RESUMEN

Fruit tree leaves have different chemical compositions and diverse wax layer structures that result in different patterns of wetting and pesticide solution spreading on their surface. Fruit development is a time when pests and diseases occur, during which a large number of pesticides are needed. The wetting and diffusion properties of pesticide droplets on fruit tree leaves were relatively poor. To solve this problem, the wetting characteristics of leaf surfaces with different surfactants were studied. The contact angle, surface tension, adhesive tension, adhesion work, and solid-liquid interfacial tension of five surfactant solution droplets on jujube leaf surfaces during fruit growth were studied by the sessile drop method. C12E5 and Triton X-100 have the best wetting effects. Two surfactants were added to a 3% beta-cyfluthrin emulsion in water, and field efficacy tests were carried out on peach fruit moths in a jujube orchard at different dilutions. The control effect is as high as 90%. During the initial stage when the concentration is low, due to the surface roughness of the leaves, the surfactant molecules adsorbed at the gas-liquid and solid-liquid interfaces reach an equilibrium, and the contact angle on the leaf surface changes slightly. With increasing surfactant concentration, the pinning effect in the spatial structure on the leaf surface is overcome by liquid droplets, thereby significantly decreasing the contact angle. When the concentration is further increased, the surfactant molecules form a saturated adsorption layer on the leaf surface. Due to the existence of a precursor water film in the droplets, surfactant molecules on the interface continuously move to the water film on the surface of jujube tree leaves, thus causing interactions between the droplets and the leaves. The conclusion of this study provides theoretical guidance for the wettability and adhesion of pesticides on jujube leaves, so as to achieve the purpose of reducing pesticide use and improving pesticide efficacy.

13.
Chem Sci ; 14(37): 10285-10296, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37772097

RESUMEN

Polycyclic heteroaromatics play a pivotal role in advancing the field of high-performance organic semiconductors. In this study, we report the synthesis of a pyrrole-bridged double azahelicene through intramolecular oxidative cyclization. By incorporating bis(4-methoxyphenyl)amine (OMeDPA) and ethylenedioxythiophene-phenyl-OMeDPA (EP-OMeDPA) into the sp3-nitrogen rich double helicene framework, we have successfully constructed two organic semiconductors with ionization potentials suitable for application in perovskite solar cells. The amorphous films of both organic semiconductors exhibit hole density-dependent mobility and conductivity. Notably, the organic semiconductor utilizing EP-OMeDPA as the electron donor demonstrates superior hole mobility at a given hole density, which is attributed to reduced reorganization energy and increased centroid distance. Moreover, this organic semiconductor exhibits a remarkably elevated glass transition temperature of up to 230 °C and lower diffusivity for external small molecules and ions. When employed as the p-doped hole transport layer in perovskite solar cells, TMDAP-EP-OMeDPA achieves an improved average efficiency of 21.7%. Importantly, the solar cell with TMDAP-EP-OMeDPA also demonstrates enhanced long-term operational stability and storage stability at 85 °C. These findings provide valuable insights into the development of high-performance organic semiconductors, contributing to the practical application of perovskite solar cells.

14.
Cell Signal ; 103: 110578, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36581219

RESUMEN

Microtubule affinity-regulating kinase 3 (MARK3), a member of the MARK family, regulates several essential pathways, including the cell cycle, ciliated cell differentiation, and osteoclast differentiation. It is important to understand the control of their activities as MARK3 contains an N-terminal serine/threonine kinase domain, ubiquitin-associated domain, and C-terminal kinase-associated domain, which perform multiple regulatory functions. These functions include post-translational modification (e.g., phosphorylation) and interaction with scaffolding and other proteins. Differences in the amino acid sequence and domain position result in different three-dimensional protein structures and affect the function of MARK3, which distinguish it from the other MARK family members. Recent data indicate a potential role of MARK3 in several pathological conditions, including congenital blepharophimosis syndrome, osteoporosis, and tumorigenesis. The present review focuses on the physiological and pathological role of MARK3, its regulation, and recent developments in the small molecule inhibitors of the MARK3 signalling cascade.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Transducción de Señal , Secuencia de Aminoácidos , Microtúbulos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Humanos
15.
ACS Nano ; 16(1): 1318-1331, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34939419

RESUMEN

Under the background of the strategy of reducing pesticide application and increasing efficiency, the mechanism and common technology of efficient and accurate target deposition of chemical pesticides are the key development direction. The interaction between pesticide droplets and a leaf surface affects the deposition behavior of pesticides. However, cucumber leaf surface modified by powdery mildew pathogens at different growth stages is more hydrophobic than a normal leaf surface, which hinders the accurate deposition of pesticides on cucumber powdery mildew leaves. Here, an effective strategy for controlling pesticide efficiency for the entire journey of pesticide application is proposed. Based on the impact dynamics of droplets, the dynamic direction of droplet bounce is determined, the trajectory of droplet rebound is preliminarily determined, and the pinning sites formed by droplets on the surface of cucumber leaves with powdery mildew are confirmed. By analyzing the dynamics in the retraction stage and the energy dissipation rate for droplets after impact, the basic parameters that can be used to simply characterize droplet rebound are screened out, and the effect of addition of an effective surfactant is determined by characterizing the basic parameters (energy dissipation rate, retraction rate, recovery coefficient). The molecular structure formed by the addition of nonionic surfactant in pesticide solution is more appropriate to the interaction between the powdery mildew layer and the pesticide solution, which ensured that the droplets are well wet and deposited on cucumber powdery mildew leaves. Meanwhile, a force balance model for the pesticide droplet wetting state is established to calculate the pinning force for the droplet and predict the transition direction for the droplet wetting state. Impact dynamics combined with force balance model analysis provides a constructive method to improve pesticide utilization during the entire journey for pesticide application on hydrophobic plant surfaces.


Asunto(s)
Plaguicidas , Interacciones Hidrofóbicas e Hidrofílicas , Humectabilidad , Hojas de la Planta/química , Tensoactivos/química
16.
Cell Death Dis ; 13(9): 828, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36167821

RESUMEN

T-LAK cell-oriented protein kinase (TOPK) is a potential therapeutic target in tumors. However, its role in anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC) has not been reported. Here, we found that TOPK was highly expressed in ALK-positive NSCLC. Additionally, ALK was identified as another upstream kinase of TOPK by in vitro kinase assay screening. Then, it was proven that ALK phosphorylated TOPK at Y74 in vitro and ex vivo, and the pathways downstream of ALK-TOPK were explored by phosphoproteomic analysis. Subsequently, we demonstrated that inhibiting TOPK enhanced tumor sensitivity to alectinib (an ALK inhibitor). The combination of alectinib and HI-032 (a TOPK inhibitor) suppressed the growth and promoted the apoptosis of ALK-positive NSCLC cells ex vivo and in vivo. Our findings reveal a novel ALK-TOPK signaling pathway in ALK-positive NSCLC. The combination of alectinib and HI-032 might be a promising therapeutic strategy for improving the sensitivity of ALK-positive NSCLC to targeted therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Quinasa de Linfoma Anaplásico/genética , Apoptosis/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Células Asesinas Activadas por Linfocinas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Quinasas , Transducción de Señal
17.
Environ Sci Pollut Res Int ; 28(14): 17712-17723, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33400109

RESUMEN

Pyraclostrobin (PYR), a fungicide of the strobilurin class, is used to control many different kinds of fungal diseases in greenhouses and on agricultural fields. In the present study, an efficient method was established for simultaneously determining PYR and its metabolite BF 500-3 in cucumber fruits, leaves, and soil matrices using QuEChERS pretreatment coupled with ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The residue levels and dissipation kinetics of PYR were determined under greenhouse conditions. The recoveries ranged from 89.8 to 103.6% with relative standard deviations (RSDs) of 3.6-7.5% at three spiking levels. The results demonstrated that PYR dissipated quickly in the cucumber field with half-lives (DT50) of 2.14-4.17 days on different sites and in different matrices. The residue of its metabolite BF 500-3 was very low and showed a trend of first increasing and then decreasing. The degradation rate of PYR in soil was the fastest, followed by that on cucumber fruits and leaves. The terminal residue of PYR at an application rate of 150 g a.i. ha-1 (the maximum recommended rate) in cucumber fruits was below the maximum residue limit (MRL) of 0.5 mg/kg established in China. However, the application of the fungicide at 225 g a.i. ha-1 (1.5× the maximum recommended rate) resulted in residues that were above the MRL 1 day after the final application, which is an unacceptable risk. Therefore, the application dosage of PYR at the recommended rates was safe to human beings and animals.


Asunto(s)
Cucumis sativus , Residuos de Plaguicidas , Contaminantes del Suelo , China , Semivida , Humanos , Cinética , Residuos de Plaguicidas/análisis , Contaminantes del Suelo/análisis , Estrobilurinas/análisis , Espectrometría de Masas en Tándem
18.
Pest Manag Sci ; 77(5): 2485-2493, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33442936

RESUMEN

BACKGROUND: Often, due to the occurrence of powdery mildew, cucumber leaf surfaces is changed into a more hydrophobic surface, which affects wetting and spreading of liquid pesticides, reducing their efficiency. The wetting and deposition behavior of liquid pesticides can be improved by adding surfactants to pesticides. Added surfactants affect the spray volume of the pesticide, which can lead to waste and a low utilization rate of the pesticide. It is important to further balance the relationship between deposition and wettability of pesticide liquid on the surfaces of healthy leaves and powdery mildew leaves of cucumber. RESULTS: This study evaluated the deposition and wettability of hexaconazole (Hexa) with surfactants on the surfaces of healthy leaves and powdery mildew leaves of cucumber. The deposition rates of Hexa with surfactants were lower than that of Hexa due to the loss of solution in conventional spray volume (750 L ha-1 ). The deposition rate of Hexa did not necessarily increase with increasing spray volume, and the deposition rate did not increase again after the spray volume increased to a certain level. Under the condition that the prevention and control effect were not reduced, we found that the volume of solution spray with added Silwet618 or AEO-5 should be adjusted to half of the normal volume, while the volume of solution spray with added 1227 or rosin-based quarternary ammonium should be adjusted to two-thirds of the normal volume to increase the deposition rate by approximately 30%. Regarding the wetting parameters, the results showed that the wettability of Hexa with Silwet618 was the best, but their combination was not ideal according to the composite index and deposition. By analyzing all the parameters, it was found that the spray volume reduction of Hexa with surfactant was approximately equal to the solution surface tension reduction, compared with the parameters of Hexa. CONCLUSION: The equilibrium relationship between deposition rate and wetting parameters was determined to provide guidance for the application of surfactants and to lower the dosage of pesticides to increase their efficiency and reduce their application. © 2021 Society of Chemical Industry.


Asunto(s)
Plaguicidas , Hojas de la Planta , Tensión Superficial , Tensoactivos , Humectabilidad
19.
J Agric Food Chem ; 69(39): 11720-11732, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34550679

RESUMEN

Hydrophobic surfaces modified by pathogens in agricultural production are one of the main reasons to reduce the utilization of pesticides. Adding surfactants to pesticide solutions is a common method to improve their wetting and spreading properties. In this work, the interaction mechanism between pathogen-modified hydrophobic surfaces and mixtures of surfactants and a pesticide was studied in detail. The interaction mechanism was determined by characterizing the wetting and spreading behaviors of droplets on cucumber powdery mildew leaves at different growth stages. When surfactants were added, droplets on cucumber powdery mildew leaves were in the Wenzel wetting state, the pinning force weakened, the contact line speed accelerated, and the adhesion force increased. We explained the micellar state and aggregation behavior of surfactant molecules in a pesticide solution that was applied to the surface of cucumber powdery mildew leaves. Droplets of solutions containing nonionic surfactants easily formed semibald micelles, binding to the pathogen of powdery mildew, whereas droplets containing cationic surfactants did not do so. Because of the electrostatic interaction between cationic surfactant molecules and powdery mildew pathogens, cationic surfactant molecules did not wet the pathogens very well, so we suggest adding nonionic surfactants rather than cationic surfactants to improve the wetting and spreading of pesticide solutions on cucumber powdery mildew leaves. This study provides new insights into enhancing the wetting and deposition of droplets on pathogen-modified hydrophobic surfaces.


Asunto(s)
Cucumis sativus , Plaguicidas , Hojas de la Planta , Tensoactivos , Humectabilidad
20.
ChemSusChem ; 14(22): 4923-4928, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34636480

RESUMEN

Chrysene is a readily available material for exploring new polycyclic aromatic hydrocarbons (PAHs). In this study, two chrysene based azahelicenes, nine-membered BA7 and ten-membered DA6, are constructed by intermolecular oxidative annulation of 6-aminochrysene and intramolecular annulation of N6 ,N12 -bis(1-chloronaphthalen-2-yl)chrysene-6,12-diamine, respectively. The hexylated BA7 and DA6 and their brominated products were undoubtedly characterized by single crystal XRD. Subsequent amination with bis(9-methyl-9H-carbazol-3-yl)amine (BMCA) electron donor afforded D-π-D-type semiconductors BA7-BMCA and DA6-BMCA with beneficial properties to act as hole transport materials for perovskite solar cell. Compared with 19.4 % champion power conversion efficiency (PCE) of BA7-BMCA based device, a higher PCE of 20.2 % for DA6-BMCA counterpart may be attributed to its S-shaped double helicene-like linker with extended π-conjugated system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA