Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(30): 75104-75115, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37213020

RESUMEN

As the core of pollution prevention and management, accurate PM2.5 concentration prediction is crucial for human survival. However, due to the nonstationarity and nonlinearity of PM2.5 concentration data, the accurate prediction for PM2.5 concentration remains a challenge. In this study, a PM2.5 concentration prediction method using weighted complementary ensemble empirical mode decomposition with adaptive noise (WCEEMDAN) and improved long and short-term memory (ILSTM) neural network is proposed. Firstly, a novel WCEEMDAN method is proposed to correctly identify the non-stationary and non-linear characteristics and divide the PM2.5 sequences into various layers. Through the correlation analysis with PM2.5 data, these sub-layers are given different weights. Secondly, the adaptive mutation particle swarm optimization (AMPSO) algorithm is developed to obtain the main hyperparameters of the long short-term memory network (LSTM) neural network, improving the prediction accuracy of PM2.5 concentration. The optimization convergence speed and accuracy are improved by adjusting the inertia weight and introducing the mutation mechanism to enhance the global optimization ability. Finally, three groups of PM2.5 concentration data are utilized to verify the effectiveness of the proposed model. Compared with other methods, the experimental results demonstrate the superiority of the proposed model. The source code can be downloaded from https://github.com/zhangli190227/WCEENDAM-ILSTM .


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Humanos , Contaminación Ambiental , Mutación , Material Particulado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA