Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Plant J ; 118(6): 1991-2002, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38549549

RESUMEN

As a major worldwide root crop, the mechanism underlying storage root yield formation has always been a hot topic in sweet potato [Ipomoea batatas (L.) Lam.]. Previously, we conducted the transcriptome database of differentially expressed genes between the cultivated sweet potato cultivar "Xushu18," its diploid wild relative Ipomoea triloba without storage root, and their interspecific somatic hybrid XT1 with medium-sized storage root. We selected one of these candidate genes, IbNF-YA1, for subsequent analysis. IbNF-YA1 encodes a nuclear transcription factor Y subunit alpha (NF-YA) gene, which is significantly induced by the natural auxin indole-3-acetic acid (IAA). The storage root yield of the IbNF-YA1 overexpression (OE) plant decreased by 29.15-40.22% compared with the wild type, while that of the RNAi plant increased by 10.16-21.58%. Additionally, IAA content increased significantly in OE plants. Conversely, the content of IAA decreased significantly in RNAi plants. Furthermore, real-time quantitative reverse transcription-PCR (qRT-PCR) analysis demonstrated that the expressions of the key genes IbYUCCA2, IbYUCCA4, and IbYUCCA8 in the IAA biosynthetic pathway were significantly changed in transgenic plants. The results indicated that IbNF-YA1 could directly target IbYUCCA4 and activate IbYUCCA4 transcription. The IAA content of IbYUCCA4 OE plants increased by 71.77-98.31%. Correspondingly, the storage root yield of the IbYUCCA4 OE plant decreased by 77.91-80.52%. These findings indicate that downregulating the IbNF-YA1 gene could improve the storage root yield in sweet potato.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ipomoea batatas , Proteínas de Plantas , Raíces de Plantas , Factor de Unión a CCAAT/genética , Factor de Unión a CCAAT/metabolismo , Ácidos Indolacéticos/metabolismo , Ipomoea batatas/genética , Ipomoea batatas/crecimiento & desarrollo , Ipomoea batatas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente
2.
Plant Physiol ; 194(2): 787-804, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37815230

RESUMEN

Root development influences plant responses to environmental conditions, and well-developed rooting enhances plant survival under abiotic stress. However, the molecular and genetic mechanisms underlying root development and abiotic stress tolerance in plants remain unclear. In this study, we identified the MYB transcription factor-encoding gene IbMYB73 by cDNA-amplified fragment length polymorphism and RNA-seq analyses. IbMYB73 expression was greatly suppressed under abiotic stress in the roots of the salt-tolerant sweet potato (Ipomoea batatas) line ND98, and its promoter activity in roots was significantly reduced by abscisic acid (ABA), NaCl, and mannitol treatments. Overexpression of IbMYB73 significantly inhibited adventitious root growth and abiotic stress tolerance, whereas IbMYB73-RNAi plants displayed the opposite pattern. IbMYB73 influenced the transcription of genes involved in the ABA pathway. Furthermore, IbMYB73 formed homodimers and activated the transcription of ABA-responsive protein IbGER5 by binding to an MYB binding sites I motif in its promoter. IbGER5 overexpression significantly inhibited adventitious root growth and abiotic stress tolerance concomitantly with a reduction in ABA content, while IbGER5-RNAi plants showed the opposite effect. Collectively, our results demonstrated that the IbMYB73-IbGER5 module regulates ABA-dependent adventitious root growth and abiotic stress tolerance in sweet potato, which provides candidate genes for the development of elite crop varieties with well-developed root-mediated abiotic stress tolerance.


Asunto(s)
Ácido Abscísico , Ipomoea batatas , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Estrés Fisiológico/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
BMC Genomics ; 25(1): 572, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844832

RESUMEN

KNOXs, a type of homeobox genes that encode atypical homeobox proteins, play an essential role in the regulation of growth and development, hormonal response, and abiotic stress in plants. However, the KNOX gene family has not been explored in sweet potato. In this study, through sequence alignment, genomic structure analysis, and phylogenetic characterization, 17, 12 and 11 KNOXs in sweet potato (I. batatas, 2n = 6x = 90) and its two diploid relatives I. trifida (2n = 2x = 30) and I. triloba (2n = 2x = 30) were identified. The protein physicochemical properties, chromosome localization, phylogenetic relationships, gene structure, protein interaction network, cis-elements of promoters, tissue-specific expression and expression patterns under hormone treatment and abiotic stresses of these 40 KNOX genes were systematically studied. IbKNOX4, -5, and - 6 were highly expressed in the leaves of the high-yield varieties Longshu9 and Xushu18. IbKNOX3 and IbKNOX8 in Class I were upregulated in initial storage roots compared to fibrous roots. IbKNOXs in Class M were specifically expressed in the stem tip and hardly expressed in other tissues. Moreover, IbKNOX2 and - 6, and their homologous genes were induced by PEG/mannitol and NaCl treatments. The results showed that KNOXs were involved in regulating growth and development, hormone crosstalk and abiotic stress responses between sweet potato and its two diploid relatives. This study provides a comparison of these KNOX genes in sweet potato and its two diploid relatives and a theoretical basis for functional studies.


Asunto(s)
Diploidia , Regulación de la Expresión Génica de las Plantas , Ipomoea batatas , Familia de Multigenes , Filogenia , Proteínas de Plantas , Estrés Fisiológico , Ipomoea batatas/genética , Ipomoea batatas/crecimiento & desarrollo , Ipomoea batatas/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Genoma de Planta , Perfilación de la Expresión Génica , Regiones Promotoras Genéticas
4.
Plant Physiol ; 191(1): 496-514, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36377782

RESUMEN

Plant flavonoids are valuable natural antioxidants. Sweet potato (Ipomoea batatas) leaves are rich in flavonoids, regenerate rapidly, and can adapt to harsh environments, making them an ideal material for flavonoid biofortification. Here, we demonstrate that the B-box (BBX) family transcription factor IbBBX29 regulates the flavonoid contents and development of sweet potato leaves. IbBBX29 was highly expressed in sweet potato leaves and significantly induced by auxin (IAA). Overexpression of IbBBX29 contributed to a 21.37%-70.94% increase in leaf biomass, a 12.08%-21.85% increase in IAA levels, and a 31.33%-63.03% increase in flavonoid accumulation in sweet potato, whereas silencing this gene produced opposite effects. Heterologous expression of IbBBX29 in Arabidopsis (Arabidopsis thaliana) led to a dwarfed phenotype, along with enhanced IAA and flavonoid accumulation. RNA-seq analysis revealed that IbBBX29 modulates the expression of genes involved in the IAA signaling and flavonoid biosynthesis pathways. Chromatin immunoprecipitation-quantitative polymerase chain reaction and electrophoretic mobility shift assay indicated that IbBBX29 targets key genes of IAA signaling and flavonoid biosynthesis to activate their expression by binding to specific T/G-boxes in their promoters, especially those adjacent to the transcription start site. Moreover, IbBBX29 physically interacted with developmental and phenylpropanoid biosynthesis-related proteins, such as AGAMOUS-LIKE 21 protein IbAGL21 and MYB308-like protein IbMYB308L. Finally, overexpressing IbBBX29 also increased flavonoid contents in sweet potato storage roots. These findings indicate that IbBBX29 plays a pivotal role in regulating IAA-mediated leaf development and flavonoid biosynthesis in sweet potato and Arabidopsis, providing a candidate gene for flavonoid biofortification in plants.


Asunto(s)
Arabidopsis , Ipomoea batatas , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Flavonoides/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396773

RESUMEN

Basic helix-loop-helix (bHLH) transcription factors extensively affect various physiological processes in plant metabolism, growth, and abiotic stress. However, the regulation mechanism of bHLH transcription factors in balancing anthocyanin biosynthesis and abiotic stress in sweet potato (Ipomoea batata (L.) Lam.) remains unclear. Previously, transcriptome analysis revealed the genes that were differentially expressed among the purple-fleshed sweet potato cultivar 'Jingshu 6' and its anthocyanin-rich mutant 'JS6-5'. Here, we selected one of these potential genes, IbMYC2, which belongs to the bHLH transcription factor family, for subsequent analyses. The expression of IbMYC2 in the JS6-5 storage roots is almost four-fold higher than Jingshu 6 and significantly induced by hydrogen peroxide (H2O2), methyl jasmonate (MeJA), NaCl, and polyethylene glycol (PEG)6000. Overexpression of IbMYC2 significantly enhances anthocyanin production and exhibits a certain antioxidant capacity, thereby improving salt and drought tolerance. In contrast, reducing IbMYC2 expression increases its susceptibility. Our data showed that IbMYC2 could elevate the expression of anthocyanin synthesis pathway genes by binding to IbCHI and IbDFR promoters. Additionally, overexpressing IbMYC2 activates genes encoding reactive oxygen species (ROS)-scavenging and proline synthesis enzymes under salt and drought conditions. Taken together, these results demonstrate that the IbMYC2 gene exercises a significant impact on crop quality and stress resistance.


Asunto(s)
Antocianinas , Ipomoea batatas , Antocianinas/metabolismo , Cloruro de Sodio/farmacología , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sequías , Resistencia a la Sequía , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Cloruro de Sodio Dietético/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo
6.
J Integr Plant Biol ; 66(2): 176-195, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38294064

RESUMEN

Sweet potato (Ipomoea batatas [L.] Lam.) is a crucial staple and bioenergy crop. Its abiotic stress tolerance holds significant importance in fully utilizing marginal lands. Transcriptional processes regulate abiotic stress responses, yet the molecular regulatory mechanisms in sweet potato remain unclear. In this study, a NAC (NAM, ATAF1/2, and CUC2) transcription factor, IbNAC087, was identified, which is commonly upregulated in salt- and drought-tolerant germplasms. Overexpression of IbNAC087 increased salt and drought tolerance by increasing jasmonic acid (JA) accumulation and activating reactive oxygen species (ROS) scavenging, whereas silencing this gene resulted in opposite phenotypes. JA-rich IbNAC087-OE (overexpression) plants exhibited more stomatal closure than wild-type (WT) and IbNAC087-Ri plants under NaCl, polyethylene glycol, and methyl jasmonate treatments. IbNAC087 functions as a nuclear transcriptional activator and directly activates the expression of the key JA biosynthesis-related genes lipoxygenase (IbLOX) and allene oxide synthase (IbAOS). Moreover, IbNAC087 physically interacted with a RING-type E3 ubiquitin ligase NAC087-INTERACTING E3 LIGASE (IbNIEL), negatively regulating salt and drought tolerance in sweet potato. IbNIEL ubiquitinated IbNAC087 to promote 26S proteasome degradation, which weakened its activation on IbLOX and IbAOS. The findings provide insights into the mechanism underlying the IbNIEL-IbNAC087 module regulation of JA-dependent salt and drought response in sweet potato and provide candidate genes for improving abiotic stress tolerance in crops.


Asunto(s)
Ciclopentanos , Ipomoea batatas , Oxilipinas , Cloruro de Sodio , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Resistencia a la Sequía , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Fisiológico/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Plant Cell ; 32(4): 1102-1123, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32034034

RESUMEN

Cultivated sweet potato (Ipomoea batatas) is an important source of food for both humans and domesticated animals. Here, we show that the B-box (BBX) family transcription factor IbBBX24 regulates the jasmonic acid (JA) pathway in sweet potato. When IbBBX24 was overexpressed in sweet potato, JA accumulation increased, whereas silencing this gene decreased JA levels. RNA sequencing analysis revealed that IbBBX24 modulates the expression of genes involved in the JA pathway. IbBBX24 regulates JA responses by antagonizing the JA signaling repressor IbJAZ10, which relieves IbJAZ10's repression of IbMYC2, a JA signaling activator. IbBBX24 binds to the IbJAZ10 promoter and activates its transcription, whereas it represses the transcription of IbMYC2 The interaction between IbBBX24 and IbJAZ10 interferes with IbJAZ10's repression of IbMYC2, thereby promoting the transcriptional activity of IbMYC2. Overexpressing IbBBX24 significantly increased Fusarium wilt disease resistance, suggesting that JA responses play a crucial role in regulating Fusarium wilt resistance in sweet potato. Finally, overexpressing IbBBX24 led to increased yields in sweet potato. Together, our findings indicate that IbBBX24 plays a pivotal role in regulating JA biosynthesis and signaling and increasing Fusarium wilt resistance and yield in sweet potato, thus providing a candidate gene for developing elite crop varieties with enhanced pathogen resistance but without yield penalty.


Asunto(s)
Ciclopentanos/metabolismo , Resistencia a la Enfermedad , Fusarium/fisiología , Ipomoea batatas/inmunología , Ipomoea batatas/microbiología , Oxilipinas/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Acetatos/farmacología , Secuencia de Bases , Ciclopentanos/farmacología , ADN de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genoma de Planta , Ipomoea batatas/genética , Ipomoea batatas/crecimiento & desarrollo , Modelos Biológicos , Oxilipinas/farmacología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Nicotiana/genética , Nicotiana/microbiología , Transcripción Genética/efectos de los fármacos
8.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446107

RESUMEN

ACTINs are structural proteins widely distributed in plants. They are the main components of microfilaments and participate in many crucial physiological activities, including the maintenance of cell shape and cytoplasmic streaming. Meanwhile, ACTIN, as a housekeeping gene, is widely used in qRT-PCR analyses of plants. However, ACTIN family genes have not been explored in the sweet potato. In this study, we identified 30, 39, and 44 ACTINs in the cultivated hexaploid sweet potato (Ipomoea batatas, 2n = 6x = 90) and its two diploid relatives, Ipomoea trifida (2n = 2x = 30) and Ipomoea triloba (2n = 2x = 30), respectively, via analysis of their genome structure and by phylogenetic characterization. These ACTINs were divided into six subgroups according to their phylogenetic relationships with Arabidopsis thaliana. The physiological properties of the protein, chromosome localization, phylogenetic relationship, gene structure, promoter cis-elements, protein interaction networks, and expression patterns of these 113 ACTINs were systematically investigated. The results suggested that homologous ACTINs are differentiated in the sweet potato and its two diploid relatives, and play various vital roles in plant growth, tuberous root development, hormone crosstalk, and abiotic stress responses. Some stable ACTINs that could be used as internal reference genes were found in the sweet potato and its two diploid relatives, e.g., IbACTIN18, -20, and -16.2; ItfACTIN2.2, -16, and -10; ItbACTIN18 and -19.1. This work provides a comprehensive comparison and furthers our understanding of the ACTIN genes in the sweet potato and its two diploid relatives, thereby supplying a theoretical foundation for their functional study and further facilitating the molecular breeding of sweet potatoes.


Asunto(s)
Ipomoea batatas , Ipomoea , Ipomoea batatas/metabolismo , Actinas/genética , Actinas/metabolismo , Filogenia , Diploidia , Ipomoea/genética , Regulación de la Expresión Génica de las Plantas
9.
Int J Mol Sci ; 24(15)2023 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-37569874

RESUMEN

Sucrose synthases (SUS; EC 2.4.1.13) encoded by a small multigene family are the central system of sucrose metabolism and have important implications for carbon allocation and energy conservation in nonphotosynthetic cells of plants. Though the SUS family genes (SUSs) have been identified in several plants, they have not been explored in sweet potato. In this research, nine, seven and seven SUSs were identified in the cultivated sweet potato (Ipomoea batatas, 2n = 6x = 90) as well as its two diploid wild relatives I. trifida (2n = 2x = 30) and I. triloba (2n = 2x = 30), respectively, and divided into three subgroups according to their phylogenetic relationships. Their protein physicochemical properties, chromosomal localization, phylogenetic relationship, gene structure, promoter cis-elements, protein interaction network and expression patterns were systematically analyzed. The results indicated that the SUS gene family underwent segmental and tandem duplications during its evolution. The SUSs were highly expressed in sink organs. The IbSUSs especially IbSUS2, IbSUS5 and IbSUS7 might play vital roles in storage root development and starch biosynthesis. The SUSs could also respond to drought and salt stress responses and take part in hormone crosstalk. This work provides new insights for further understanding the functions of SUSs and candidate genes for improving yield, starch content, and abiotic stress tolerance in sweet potatoes.


Asunto(s)
Ipomoea batatas , Ipomoea batatas/metabolismo , Filogenia , Diploidia , Almidón/metabolismo , Sacarosa/metabolismo , Regulación de la Expresión Génica de las Plantas
10.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36835500

RESUMEN

Phytochrome-interacting factors (PIFs) are essential for plant growth, development, and defense responses. However, research on the PIFs in sweet potato has been insufficient to date. In this study, we identified PIF genes in the cultivated hexaploid sweet potato (Ipomoea batatas) and its two wild relatives, Ipomoea triloba, and Ipomoea trifida. Phylogenetic analysis revealed that IbPIFs could be divided into four groups, showing the closest relationship with tomato and potato. Subsequently, the PIFs protein properties, chromosome location, gene structure, and protein interaction network were systematically analyzed. RNA-Seq and qRT-PCR analyses showed that IbPIFs were mainly expressed in stem, as well as had different gene expression patterns in response to various stresses. Among them, the expression of IbPIF3.1 was strongly induced by salt, drought, H2O2, cold, heat, Fusarium oxysporum f. sp. batatas (Fob), and stem nematodes, indicating that IbPIF3.1 might play an important role in response to abiotic and biotic stresses in sweet potato. Further research revealed that overexpression of IbPIF3.1 significantly enhanced drought and Fusarium wilt tolerance in transgenic tobacco plants. This study provides new insights for understanding PIF-mediated stress responses and lays a foundation for future investigation of sweet potato PIFs.


Asunto(s)
Fusarium , Ipomoea batatas , Ipomoea , Fitocromo , Ipomoea batatas/metabolismo , Fusarium/metabolismo , Filogenia , Fitocromo/metabolismo , Sequías , Peróxido de Hidrógeno/metabolismo , Ipomoea/genética , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
11.
New Phytol ; 236(6): 2151-2171, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36128653

RESUMEN

Drought limits crop development and yields. bHLH (basic helix-loop-helix) transcription factors play critical roles in regulating the drought response in many plants, but their roles in this process in sweet potato are unknown. Here, we report that two bHLH proteins, IbbHLH118 and IbbHLH66, play opposite roles in the ABA-mediated drought response in sweet potato. ABA treatment repressed IbbHLH118 expression but induced IbbHLH66 expression in the drought-tolerant sweet potato line Xushu55-2. Overexpressing IbbHLH118 reduced drought tolerance, whereas overexpressing IbbHLH66 enhanced drought tolerance, in sweet potato. IbbHLH118 directly binds to the E-boxes in the promoters of ABA-insensitive 5 (IbABI5), ABA-responsive element binding factor 2 (IbABF2) and tonoplast intrinsic protein 1 (IbTIP1) to suppress their transcription. IbbHLH118 forms homodimers with itself or heterodimers with IbbHLH66. Both of the IbbHLHs interact with the ABA receptor IbPYL8. ABA accumulates under drought stress, promoting the formation of the IbPYL8-IbbHLH66-IbbHLH118 complex. This complex interferes with IbbHLH118's repression of ABA-responsive genes, thereby activating ABA responses and enhancing drought tolerance. These findings shed light on the role of the IbPYL8-IbbHLH66-IbbHLH118 complex in the ABA-dependent drought response of sweet potato and identify candidate genes for developing elite crop varieties with enhanced drought tolerance.


Asunto(s)
Ácido Abscísico , Ipomoea batatas , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Sequías , Ipomoea batatas/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
New Phytol ; 233(3): 1133-1152, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34773641

RESUMEN

Soil salinity and drought limit sweet potato yield. Scavenging of reactive oxygen species (ROS) by peroxidases (PRXs) is essential during plant stress responses, but how PRX expression is regulated under abiotic stress is not well understood. Here, we report that the B-box (BBX) family transcription factor IbBBX24 activates the expression of the class III peroxidase gene IbPRX17 by binding to its promoter. Overexpression of IbBBX24 and IbPRX17 significantly improved the tolerance of sweet potato to salt and drought stresses, whereas reducing IbBBX24 expression increased their susceptibility. Under abiotic stress, IbBBX24- and IbPRX17-overexpression lines showed higher peroxidase activity and lower H2 O2 accumulation compared with the wild-type. RNA sequencing analysis revealed that IbBBX24 modulates the expression of genes encoding ROS scavenging enzymes, including PRXs. Moreover, interaction between IbBBX24 and the APETALA2 (AP2) protein IbTOE3 enhances the ability of IbBBX24 to activate IbPRX17 transcription. Overexpression of IbTOE3 improved the tolerance of tobacco plants to salt and drought stresses by scavenging ROS. Together, our findings elucidate the mechanism underlying the IbBBX24-IbTOE3-IbPRX17 module in response to abiotic stress in sweet potato and identify candidate genes for developing elite crop varieties with enhanced abiotic stress tolerance.


Asunto(s)
Ipomoea batatas , Sequías , Regulación de la Expresión Génica de las Plantas , Ipomoea batatas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/genética
13.
Plant Cell Rep ; 41(11): 2159-2171, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35943560

RESUMEN

KEY MESSAGE: A novel interspecific somatic hybrid combining drought tolerance and high quality of sweet potato and Ipomoea triloba L. was obtained and its genetic and epigenetic variations were studied. Somatic hybridization can be used to overcome the cross-incompatibility between sweet potato (Ipomoea batatas (L.) Lam.) and its wild relatives and transfer useful and desirable genes from wild relatives to cultivated plants. However, most of the interspecific somatic hybrids obtained to date cannot produce storage roots and do not exhibit agronomic characters. In the present study, a novel interspecific somatic hybrid, named XT1, was obtained through protoplast fusion between sweet potato cv. Xushu 18 and its wild relative I. triloba. This somatic hybrid produced storage roots and exhibited significantly higher drought tolerance and quality compared with its cultivated parent Xushu 18. Transcriptome and real-time quantitative PCR (qRT-PCR) analyses revealed that the well-known drought stress-responsive genes in XT1 and I. triloba were significantly up-regulated under drought stress. The genomic structural reconstructions between the two genomes of the fusion parents in XT1 were confirmed using genomic in situ hybridization (GISH) and specific nuclear and cytoplasmic DNA markers. The DNA methylation variations were characterized by methylation-sensitive amplified polymorphism (MSAP). This study not only reveals the significance of somatic hybridization in the genetic improvement of sweet potato but also provides valuable materials and knowledge for further investigating the mechanism of storage root formation in sweet potato.


Asunto(s)
Ipomoea batatas , Ipomoea , Ipomoea batatas/genética , Ipomoea/genética , Sequías , Transcriptoma
14.
Int J Mol Sci ; 23(6)2022 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-35328509

RESUMEN

Calcium-dependent protein kinase (CDPKs) is one of the calcium-sensing proteins in plants. They are likely to play important roles in growth and development and abiotic stress responses. However, these functions have not been explored in sweet potato. In this study, we identified 39 CDPKs in cultivated hexaploid sweet potato (Ipomoea batatas, 2n = 6x = 90), 35 CDPKs in diploid relative Ipomoea trifida (2n = 2x = 30), and 35 CDPKs in Ipomoea triloba (2n = 2x = 30) via genome structure analysis and phylogenetic characterization, respectively. The protein physiological property, chromosome localization, phylogenetic relationship, gene structure, promoter cis-acting regulatory elements, and protein interaction network were systematically investigated to explore the possible roles of homologous CDPKs in the growth and development and abiotic stress responses of sweet potato. The expression profiles of the identified CDPKs in different tissues and treatments revealed tissue specificity and various expression patterns in sweet potato and its two diploid relatives, supporting the difference in the evolutionary trajectories of hexaploid sweet potato. These results are a critical first step in understanding the functions of sweet potato CDPK genes and provide more candidate genes for improving yield and abiotic stress tolerance in cultivated sweet potato.


Asunto(s)
Ipomoea batatas , Ipomoea , Diploidia , Regulación de la Expresión Génica de las Plantas , Crecimiento y Desarrollo , Ipomoea/genética , Ipomoea batatas/genética , Filogenia , Estrés Fisiológico/genética
15.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36555491

RESUMEN

Sugar Will Eventually be Exported Transporter (SWEET) proteins are key transporters in sugar transportation. They are involved in the regulation of plant growth and development, hormone crosstalk, and biotic and abiotic stress responses. However, SWEET family genes have not been explored in the sweet potato. In this study, we identified 27, 27, and 25 SWEETs in cultivated hexaploid sweet potato (Ipomoea batatas, 2n = 6x = 90) and its two diploid relatives, Ipomoea trifida (2n = 2x = 30) and Ipomoea triloba (2n = 2x = 30), respectively. These SWEETs were divided into four subgroups according to their phylogenetic relationships with Arabidopsis. The protein physiological properties, chromosome localization, phylogenetic relationships, gene structures, promoter cis-elements, protein interaction networks, and expression patterns of these 79 SWEETs were systematically investigated. The results suggested that homologous SWEETs are differentiated in sweet potato and its two diploid relatives and play various vital roles in plant growth, tuberous root development, carotenoid accumulation, hormone crosstalk, and abiotic stress response. This work provides a comprehensive comparison and furthers our understanding of the SWEET genes in the sweet potato and its two diploid relatives, thereby supplying a theoretical foundation for their functional study and further facilitating the molecular breeding of sweet potato.


Asunto(s)
Ipomoea batatas , Ipomoea , Ipomoea batatas/metabolismo , Filogenia , Diploidia , Ipomoea/genética , Genoma de Planta , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35054868

RESUMEN

WRKY transcription factors are one of the important families in plants, and have important roles in plant growth, abiotic stress responses, and defense regulation. In this study, we isolated a WRKY gene, ItfWRKY70, from the wild relative of sweet potato Ipomoea trifida (H.B.K.) G. Don. This gene was highly expressed in leaf tissue and strongly induced by 20% PEG6000 and 100 µM abscisic acid (ABA). Subcellar localization analyses indicated that ItfWRKY70 was localized in the nucleus. Overexpression of ItfWRKY70 significantly increased drought tolerance in transgenic sweet potato plants. The content of ABA and proline, and the activity of SOD and POD were significantly increased, whereas the content of malondialdehyde (MDA) and H2O2 were decreased in transgenic plants under drought stress. Overexpression of ItfWRKY70 up-regulated the genes involved in ABA biosynthesis, stress-response, ROS-scavenging system, and stomatal aperture in transgenic plants under drought stress. Taken together, these results demonstrated that ItfWRKY70 plays a positive role in drought tolerance by accumulating the content of ABA, regulating stomatal aperture and activating the ROS scavenging system in sweet potato.


Asunto(s)
Adaptación Fisiológica , Sequías , Ipomoea batatas/metabolismo , Ipomoea batatas/fisiología , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Adaptación Fisiológica/genética , Secuencia de Aminoácidos , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ipomoea batatas/genética , Modelos Biológicos , Oryza/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estomas de Plantas/citología , Estomas de Plantas/fisiología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Protoplastos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN , Estrés Fisiológico/genética , Nicotiana/citología , Factores de Transcripción/química , Factores de Transcripción/genética , Activación Transcripcional/genética , Regulación hacia Arriba/genética
17.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34575953

RESUMEN

Jasmonate ZIM-domain (JAZ) proteins are key repressors of a jasmonic acid signaling pathway. They play essential roles in the regulation of plant growth and development, as well as environmental stress responses. However, this gene family has not been explored in sweet potato. In this study, we identified 14, 15, and 14 JAZs in cultivated hexaploid sweet potato (Ipomoea batatas, 2n = 6x = 90), and its two diploid relatives Ipomoea trifida (2n = 2x = 30) and Ipomoea triloba (2n = 2x = 30), respectively. These JAZs were divided into five subgroups according to their phylogenetic relationships with Arabidopsis. The protein physiological properties, chromosome localization, phylogenetic relationship, gene structure, promoter cis-elements, protein interaction network, and expression pattern of these 43 JAZs were systematically investigated. The results suggested that there was a differentiation between homologous JAZs, and each JAZ gene played different vital roles in growth and development, hormone crosstalk, and abiotic stress response between sweet potato and its two diploid relatives. Our work provided comprehensive comparison and understanding of the JAZ genes in sweet potato and its two diploid relatives, supplied a theoretical foundation for their functional study, and further facilitated the molecular breeding of sweet potato.


Asunto(s)
Ciclopentanos/metabolismo , Ipomoea batatas/genética , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas Represoras/genética , Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo , Ipomoea batatas/crecimiento & desarrollo , Filogenia , Estrés Fisiológico/genética , Factores de Transcripción/genética
18.
Plant Biotechnol J ; 17(1): 21-32, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29734529

RESUMEN

Sucrose non-fermenting-1-related protein kinase-1 (SnRK1) is an essential energy-sensing regulator and plays a key role in the global control of carbohydrate metabolism. The SnRK1 gene has been found to increase starch accumulation in several plant species. However, its roles in improving starch quality have not been reported to date. In this study, we found that the IbSnRK1 gene was highly expressed in the storage roots of sweet potato and strongly induced by exogenous sucrose. Its expression followed the circandian rhythm. Its overexpression not only increased starch content, but also decreased proportion of amylose, enlarged granule size and improved degree of crystallinity and gelatinization in transgenic sweet potato, which revealed, for the first time, the important roles of SnRK1 in improving starch quality of plants. The genes involved in starch biosynthesis pathway were systematically up-regulated, and the content of ADP-glucose as an important precursor for starch biosynthesis and the activities of key enzymes were significantly increased in transgenic sweet potato. These findings indicate that IbSnRK1 improves starch content and quality through systematical up-regulation of the genes and the increase in key enzyme activities involved in starch biosynthesis pathway in transgenic sweet potato. This gene has the potential to improve starch content and quality in sweet potato and other plants.


Asunto(s)
Genes de Plantas/genética , Ipomoea batatas/genética , Plantas Modificadas Genéticamente/genética , Almidón/metabolismo , Amilosa/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Gránulos Citoplasmáticos/metabolismo , Regulación de la Expresión Génica de las Plantas , Ipomoea batatas/química , Ipomoea batatas/metabolismo , Tubérculos de la Planta/química , Tubérculos de la Planta/metabolismo , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/metabolismo , Almidón/análisis , Sacarosa/metabolismo
19.
New Phytol ; 223(4): 1918-1936, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31091337

RESUMEN

CCCH-type zinc-finger proteins play essential roles in regulating plant development and stress responses. However, the molecular and functional properties of non-tandem CCCH-type zinc-finger (non-TZF) proteins have been rarely characterized in plants. Here, we report the biological and molecular characterization of a sweet potato non-TZF gene, IbC3H18. We show that IbC3H18 exhibits tissue- and abiotic stress-specific expression, and could be effectively induced by abiotic stresses, including NaCl, polyethylene glycol (PEG) 6000, H2 O2 and abscisic acid (ABA) in sweet potato. Accordingly, overexpression of IbC3H18 led to increased, whereas knock-down of IbC3H18 resulted in decreased tolerance of sweet potato to salt, drought and oxidation stresses. In addition, IbC3H18 functions as a nuclear transcriptional activator and regulates the expression of a range of abiotic stress-responsive genes involved in reactive oxygen species (ROS) scavenging, ABA signaling, photosynthesis and ion transport pathways. Moreover, our data demonstrate that IbC3H18 physically interacts with IbPR5, and that overexpression of IbPR5 enhances salt and drought tolerance in transgenic tobacco plants. Collectively, our data indicate that IbC3H18 functions in enhancing abiotic stress tolerance in sweet potato, which may serve as a candidate gene for use in improving abiotic stress resistance in crops.


Asunto(s)
Adaptación Fisiológica , Núcleo Celular/metabolismo , Ipomoea batatas/metabolismo , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Transactivadores/metabolismo , Ácido Abscísico/farmacología , Secuencia de Aminoácidos , Secuencia de Bases , Sequías , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ipomoea batatas/genética , Oxidación-Reducción , Proteínas de Plantas/química , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Tolerancia a la Sal/efectos de los fármacos , Cloruro de Sodio/farmacología , Nicotiana/genética , Nicotiana/fisiología , Activación Transcripcional , Regulación hacia Arriba/efectos de los fármacos
20.
Plant Cell Rep ; 38(11): 1373-1382, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31183509

RESUMEN

KEY MESSAGE: The overexpression of IbbZIP1 leads to a significant upregulation of abiotic-related genes, suggesting that IbbZIP1 gene confers salt and drought tolerance in transgenic Arabidopsis. Basic region/leucine zipper motif (bZIP) transcription factors regulate flower development, seed maturation, pathogen defense, and stress signaling in plants. Here, we cloned a novel bZIP transcription factor gene, named IbbZIP1, from sweetpotato [Ipomoea batatas (L.) Lam.] line HVB-3. The full length of IbbZIP1 exhibited transactivation activity in yeast. The expression of IbbZIP1 in sweetpotato was strongly induced by NaCl, PEG6000, and abscisic acid (ABA). Its overexpression in Arabidopsis significantly enhanced salt and drought tolerance. Under salt and drought stresses, the transgenic Arabidopsis plants showed significant upregulation of the genes involved in ABA and proline biosynthesis and reactive oxygen species scavenging system, significant increase of ABA and proline contents and superoxide dismutase activity and significant decrease of H2O2 content. These results demonstrate that the IbbZIP1 gene confers salt and drought tolerance in transgenic Arabidopsis. This study provides a novel bZIP gene for improving the tolerance of sweetpotato and other plants to abiotic stresses.


Asunto(s)
Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Sequías , Ipomoea batatas/genética , Proteínas de Plantas/genética , Tolerancia a la Sal/genética , Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Plantas Modificadas Genéticamente/genética , Prolina/biosíntesis , Prolina/genética , Prolina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA