Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Langmuir ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255345

RESUMEN

Biomass and its derivatives, with their renewable characteristics, cost-effectiveness, and controllable structural and compositional properties, are promising precursors for carbon materials. Herein, N,O-codoped carbon aerogels were synthesized by carbonization and zinc nitrate activation of histidine. The specific surface area (SSA) was markedly increased with the addition of zinc nitrate, and the maximum value achieved 853 m2 g-1 for ZHC-11 obtained with the molar ratio of 1:1 between histidine and zinc nitrate. The D/G-band intensity ratio increased from 1.55 for the histidine-derived control sample HC to 1.65 for ZHC-11, indicating the enhancement of amorphous feature. The nitrogen content increased from 6.5% for HC to 1.60 for ZHC-11. The optimized microstructure and enriched heteroatom doping are beneficial to the capacitance performance. The optimum electrode exhibited 234.1 F g-1 at 0.1 A g-1 and maintained 116.5 F g-1 at 60 A g-1 in a three-electrode system. In particular, the symmetric supercapacitor showed 121.9 F g-1 and 19.5 Wh kg-1 at 0.2 A g-1. This research offers guidance on the cost-effective synthesis of carbon materials for supercapacitors, while also providing novel insights to realize the complete utilization of biomass derivatives.

2.
Langmuir ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255466

RESUMEN

The incompatibility between electrolyte ions and electrode pore sizes, coupled with the extensive use of activators and dopants, significantly restricts the fabrication of porous carbon materials. Consequently, developing environmentally sustainable and efficient methodologies that exploit the intrinsic properties and pretreatment of materials to facilitate self-activation and self-doping becomes crucial. In this study, potassium histidine and magnesium histidine molecular salts were synthesized as precursors, enabling specific ion activation and bimetallic template-directed tunable porosity through a one-step carbonization process. Notably, the ratio of bimolecular salts significantly influenced the porous structure of carbon, the properties of heteroatoms, and the electrochemical performance. By optimizing the ratio, the porous carbon materials exhibited high accessibility to electrolyte ions and effective ion/electron transport channels. Consequently, the optimal sample (NOSPC-2) achieved a high specific capacitance of 318 F g-1 at 0.1 A g-1 and a good capacitance retention rate of 98.8% after 50,000 cycles at 5 A g-1. In addition, NOSPC-2 also boasted high energy density and power density, reaching 22 Wh kg-1 and 25 kW kg-1, respectively. This research represents a significant stride in advancing preparation technologies for small molecule derived porous carbon materials, providing valuable insights for the rational design of carbon electrode materials for capacitive energy storage.

3.
Langmuir ; 40(37): 19701-19710, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39219093

RESUMEN

The preparation of porous carbon is constrained by the extensive use and detrimental impact of activators and dopants. Therefore, developing green and efficient strategies that leverage the intrinsic properties and pretreatment of the materials to achieve self-activation and self-doping is particularly crucial for porous carbon materials. Herein, potassium histidine was utilized as the molecular salt precursor, attaining the efficient and streamlined preparation of porous carbon through a one-step carbonization process that enables self-activation, self-doping, and self-templating. More interestingly, the carbonization temperature significantly impacts the porous structure of the molecular salt precursors, the properties of the heteroatoms, and electrochemical performance. The designed electrodes exhibit high accessibility to electrolyte ions and effective ion-electron transport channels. Therefore, the optimal carbon material (KHis800) has an excellent mass-specific capacitance of 305.2 F g-1 at 0.2 A g-1, and a high capacitance retention rate of 115.6% (50,000 cycles at 5 A g-1). Notably, KHis800 also shows a maximum energy density of 19.6 Wh kg-1. This research is dedicated to exploring a more efficient preparation method for porous carbon material via molecular salts, offering insights for the sustainable development of carbon materials.

4.
Langmuir ; 40(37): 19665-19674, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39229748

RESUMEN

A green and economical methodology to fabricate carbon-based materials with suitable pore size distributions is needed to achieve rapid electrolyte diffusion and improve the performance of supercapacitors. Here, a method combining in situ templates with self-activation and self-doping is proposed. By variation of the molar ratio of magnesium folate and potassium folate, the pore size distribution was effectively adjusted. The optimal carbon materials (Kx) have a high specific surface area (1021-1676 m2 g-1) and hierarchical pore structure, which significantly promotes its excellent capacitive properties. Notably, K2 shows an excellent mass specific capacitance of 233 F g-1 at 0.1 A g-1. It still retained 113 F g-1 at 55 A g-1. The assembled symmetric supercapacitor exhibited an outstanding cyclic stability. It maintains 100% capacitance after 100 000 cycles at 10 A g-1. The symmetric supercapacitor demonstrated a maximum power density of 99.8 kW kg-1. This study focuses on the preparation of layered pore structures to provide insights into the sustainable design of carbon materials.

5.
Molecules ; 29(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38893408

RESUMEN

The hierarchical porous carbon-based materials derived from biomass are beneficial for the enhancement of electrochemical performances in supercapacitors. Herein, we report the fabrication of nitrogen-doped 3D flower-like hierarchical porous carbon (NPC) assembled by nanosheets using a mixture of urea, ZnCl2, and starch via a low-temperature hydrothermal reaction and high-temperature carbonization process. As a consequence, the optimized mass ratio for the mixture is 2:2:2 and the temperature is 700 °C. The NPC structures are capable of electron transport and ion diffusion owing to their high specific surface area (1498.4 m2 g-1) and rich heteroatoms. Thereby, the resultant NPC electrodes display excellent capacitive performance, with a high specific capacitance of 249.7 F g-1 at 1.0 A g-1 and good cycling stability. Remarkably, this implies a superior energy density of 42.98 Wh kg-1 with a power density of 7500 W kg-1 in organic electrolyte for the symmetrical supercapacitor. This result verifies the good performance of as-synthesized carbon materials in capacitive energy storage applications, which is inseparable from the hierarchical porous features of the materials.

6.
Molecules ; 28(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37836840

RESUMEN

N, O Co-Doped porous carbon materials are promising electrode materials for supercapacitors. However, it is still a challenge to prepare high capacitance performance N, O Co-Doped porous carbon materials with balanced pore structure. In this work, a simple chemical blowing method was developed to produce hierarchal porous carbon materials with Zn(NO3)2·6H2O and Fe(NO3)3·9H2O as the foaming agents and precursors of dual templates. Soybean protein isolate served as a self-doping carbon source. The amount of Fe(NO3)3·9H2O influenced the microstructure, element content and capacitance performance of the obtained porous carbon materials. The optimized sample CZnFe-5 with the addition of 5% Fe(NO3)3·9H2O displayed the best capacitance performance. The specific capacitance reached 271 F g-1 at 0.2 A g-1 and retained 133 F g-1 at 100 A g-1. The CZnFe-5//CZnFe-5 symmetric supercapacitors delivered a maximum energy density of 16.83 Wh kg-1 and good stability with capacitance retention of 86.33% after 40,000 cycles tests at 50 A g-1. The symmetric supercapacitors exhibited potential applications in lighting LED bulbs with a voltage of 3 V. This work provides a new strategy for the synthesis of hierarchical porous carbon materials for supercapacitors from low-cost biomass products.

7.
Molecules ; 28(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36838820

RESUMEN

Self-supporting electrode materials with the advantages of a simple operation process and the avoidance of the use any binders are promising candidates for supercapacitors. In this work, carbon-based self-supporting electrode materials with nanosheets grown on Al foil were prepared by combining hydrothermal reaction and the one-step chemical vapor deposition method. The effect of the concentration of the reaction solution on the structures as well as the electrochemical performance of the prepared samples were studied. With the increase in concentration, the nanosheets of the samples became dense and compact. The CNS-120 obtained from a 120 mmol zinc nitrate aqueous solution exhibited excellent electrochemical performance. The CNS-120 displayed the highest areal capacitance of 6.82 mF cm-2 at the current density of 0.01 mA cm-2. Moreover, the CNS-120 exhibited outstanding rate performance with an areal capacitance of 3.07 mF cm-2 at 2 mA cm-2 and good cyclic stability with a capacitance retention of 96.35% after 5000 cycles. Besides, the CNS-120 possessed an energy density of 5.9 µWh cm-2 at a power density of 25 µW cm-2 and still achieved 0.3 µWh cm-2 at 4204 µW cm-2. This work provides simple methods to prepared carbon-based self-supporting materials with low-cost Al foil and demonstrates their potential for realistic application of supercapacitors.


Asunto(s)
Araceae , Carbono , Capacidad Eléctrica , Electrodos , Gases
8.
Small ; 18(25): e2201307, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35587178

RESUMEN

The simple design of a high-energy-density device with high-mass-loading electrode has attracted much attention but is challenging. Manganese oxide (MnO2 ) with its low cost and excellent electrochemical performance shows high potential for practical application in this regard. Hence, the high-mass-loading of the MnO2 electrode with wood-derived carbon (WC) as the current collector is reported through a convenient hydrothermal reaction for high-energy-density devices. Benefiting from the high-mass-loading of the MnO2 electrode (WC@MnO2 -20, ≈14.1 mg cm-2 ) and abundant active sites on the surface of the WC hierarchically porous structure, the WC@MnO2 -20 electrode shows remarkable high-rate performance of areal/specific capacitance ≈1.56 F cm-2 /45 F g-1 , compared to the WC electrode even at the high density of 20 mA cm-2 . Furthermore, the obtained symmetric supercapacitor exhibits high areal/specific capacitances of 3.62 F cm-2 and 87 F g-1 at 1.0 mA cm-2 and high energy densities of 0.502 mWh cm-2 /12.2 Wh kg-1 with capacitance retention of 75.2% after 10 000 long-term cycles at 20 mA cm-2 . This result sheds light on a feasible design strategy for high-energy-density supercapacitors with the appropriate mass loading of active materials and low-tortuosity structural design while also encouraging further investigation into electrochemical storage.

9.
Small ; 17(35): e2102532, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34302441

RESUMEN

For the proliferation of the supercapacitor technology, it is essential to attain superior areal and volumetric performance. Nevertheless, maintaining stable areal/volumetric capacitance and rate capability, especially for thick electrodes, remains a fundamental challenge. Here, for the first time, a rationally designed porous monolithic electrode is reported with high thickness of 800 µm (46.74 mg cm-2 , with high areal mass loading of NiCo2 S4 6.9 mg cm-2 ) in which redox-active Ag nanoparticles and NiCo2 S4 nanosheets are sequentially decorated on highly conductive wood-derived carbon (WC) substrates. The hierarchically assembled WC@Ag@NiCo2 S4 electrode exhibits outstanding areal capacitance of 6.09 F cm-2 and long-term stability of 84.5% up to 10 000 cycles, as well as exceptional rate capability at 50 mA cm-2 . The asymmetric cell with an anode of WC@Ag and a cathode of WC@Ag@NiCo2 S4 delivers areal/volumetric energy density of 0.59 mWh cm-2 /3.93 mWh cm-3 , which is much-improved performance compared to those of most reported thick electrodes at the same scale. Theoretical calculations verify that the enhanced performance could be attributed to the decreased adsorption energy of OH- and the down-shifted d-band of Ag atoms, which can accelerate the electron transport and ion transfer.

10.
Analyst ; 146(17): 5287-5293, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34338251

RESUMEN

A facile one-pot hydrothermal approach for synthesizing water-dispersed nitrogen and sulfur doped carbon dots (NS-CDs) with high luminescence quantum yield was explored, using cysteine and tryptophan as precursors. The NS-CDs were characterized by means of FT-IR spectroscopy, XRD, TEM, etc. It was found that the absolute photoluminescence quantum yield (QY) of the NS-CDs determined with an integrating sphere can reach up to 73%, with an average decay time of 17.06 ns. Electrochemiluminescence (ECL) behaviors and mechanisms of the NS-CDs/K2S2O8 coreactant system were investigated. When the working electrode was modified with the prepared NS-CDs, the ECL efficiency of the NS-CDs with K2S2O8 was 24%, relative to Ru(bpy)3Cl2/K2S2O8. This work shows great potential for the NS-CDs to be used in bioanalytical applications.


Asunto(s)
Carbono , Puntos Cuánticos , Aminoácidos , Nitrógeno , Espectroscopía Infrarroja por Transformada de Fourier , Azufre , Agua
11.
Analyst ; 146(11): 3679-3685, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-33955434

RESUMEN

In the electrochemiluminescence (ECL) field, most reported luminophores were focused on high-triggering potential and short wavelength, which was adverse for the ECL theory study and application at low potentials. Perylene diimide derivatives could emit near-infrared (NIR) ECL at low-triggering potential; however, they are always highly aggregated into a microrod structure and stacked together, which largely limited their application in biological fields such as bio-sensing and bio-imaging. To overcome these obstacles, we designed a novel perylene diimide molecule, namely N,N'-dicaproate sodium-3,4,9,10-perylenedicarboximide (PDI-COONa). This molecule self-assembled into a two-dimensional network nanostructure, which largely decreased the aggregation degree of PDI molecules and provided solid bases for designing lowly-aggregated PDI molecules. Also, the formed nanoluminophore produced strong emission at -0.26 V with an NIR wavelength 700 nm, which should be due to the excited J-type PDI-COO- dimers. Moreover, this network nanoluminophore well-dispersed on graphene oxide (GO) as an ECL nanomaterial to label secondary antibodies and fabricate a sandwiched immunosensor for alpha-fetoprotein (AFP) detection between 0 and -0.6 V. This immunosensor showed a wider linear response for AFP ranging from 0.1 fg mL-1 to 1 µg mL-1 with a low detection limit 0.0353 fg mL-1 compared with other immunosensors based on PDI microrod-modified GO ECL materials. The fabricated immunosensor also showed good feasibility in human serum samples.


Asunto(s)
Técnicas Biosensibles , Perileno , Técnicas Electroquímicas , Humanos , Inmunoensayo , Límite de Detección , Mediciones Luminiscentes
12.
Chemistry ; 26(68): 15892-15900, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-32780915

RESUMEN

Artificial lighting sources are one of the most important technological developments for our modern lives; the search for cost-effective and efficient luminophores is therefore crucial to a sustainable future. Graphene quantum dots (GQDs) are carbon-based nanomaterials that exhibit exceptional optical and electronic properties, making them a prime candidate for a luminophore in a light-emitting device. Nitrogen-doped GQDs fabricated from a facile top-down electrochemical exfoliation process with a nitrogen-containing electrolyte in this report showed strong photoluminescent emission at 450 nm, and electrogenerated chemiluminescence at 660 nm in the presence of benzoyl peroxide as a coreactant. When introduced into solid-state light-emitting electrochemical cells, for the first time, the GQDs displayed a broad white emission centered at 610 nm, corresponding to Commision Internationale de l'eclairage (CIE) colour coordinates of (0.38, 0.36).

13.
Anal Chem ; 87(3): 1638-45, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25556377

RESUMEN

A facile and cost-efficient hydrothermal and lyophilization two-step strategy has been developed to prepare three-dimensional (3D) SnO2/rGO composites as NO2 gas sensor. In the present study, two different metal salt precursors (Sn(2+) and Sn(4+)) were used to prepare the 3D porous composites. It was found that the products prepared from different tin salts exhibited different sensing performance for NO2 detection. The scanning electron microscopy and transmission electron microscopy characterizations clearly show the macroporous 3D hybrids, nanoporous structure of reduce graphene oxide (rGO), and the supported SnO2 nanocrystals with an average size of 2-7 nm. The specific surface area and porosity properties of the 3D mesoporous composites were analyzed by Braunauer-Emmett-Teller method. The results showed that the SnO2/rGO composite synthesized from Sn(4+) precursor (SnO2/rGO-4) has large surface area (441.9 m(2)/g), which is beneficial for its application as a gas sensing material. The gas sensing platform fabricated from the SnO2/rGO-4 composite exhibited a good linearity for NO2 detection, and the limit of detection was calculated to be as low as about 2 ppm at low temperature. The present work demonstrates that the 3D mesoporous SnO2/rGO composites with extremely large surface area and stable nanostructure are excellent candidate materials for gas sensing.

14.
Anal Chem ; 86(15): 7996-8002, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25011608

RESUMEN

Metal oxide materials have been widely used as gas-sensing platforms, and their sensing performances are largely dependent on the morphology and surface structure. Here, freestanding flower-like Co3O4 nanostructures supported on three-dimensional (3D) carbon foam (Co3O4@CF) were successfully synthesized by a facile and low-cost hydrothermal route and annealing procedure. The morphology and structure of the nanocomposites were studied by X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive spectroscopy, and scanning electron microscopy (SEM). The SEM characterizations showed that the skeleton of the porous carbon foam was fully covered by flower-like Co3O4 nanostructures. Moreover, each Co3O4 nanoflower is composed of densely packed nanoneedles with a length of ~10 µm, which can largely enhance the surface area (about 286.117 m(2)/g) for ethanol sensing. Gas sensor based on the as-synthesized 3D Co3O4@CF nanostructures was fabricated to study the sensing performance for ethanol at a temperature range from 180 to 360 °C. Due to the 3D porous structure and the improvement in sensing surface/interface, the Co3O4@CF nanostructure exhibited enhanced sensing performance for ethanol detection with low resistance, fast response and recovery time, high sensitivity, and limit of detection as low as 15 ppm at 320 °C. The present study shows that such novel 3D metal oxide/carbon hybrid nanostructures are promising platforms for gas sensing.


Asunto(s)
Carbono/química , Cobalto/química , Etanol/análisis , Gases/química , Nanoestructuras , Óxidos/química , Microscopía Electrónica de Rastreo , Porosidad
15.
Talanta ; 270: 125517, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38091744

RESUMEN

Hydrogen sulfide (H2S) is a toxic contaminant and has great influence on many physiological processes. Due to various pathophysiological roles and environmental pollution problems, it is necessary to construct and develop simple and portable monitoring sensors for the precise detection of H2S. Herein, we developed a smartphone-adapted dual-mode detection platform by integrating the colorimetric and photothermal imaging analysis into a metal-organic framework-based chip (ZIF-8/Cu). Due to the nanoconfinement effect of ZIF-8, small-sized plasmonic CuS could be in-situ formed during the detection procedure of H2S and endowed the chips with excellent photothermal properties. By constructing a smartphone-adapted photothermal imager, the metal-organic framework-based chip could achieve a portable photothermal imaging analysis of H2S. Moreover, as the formed CuS was a good peroxidase-like nanozyme, the chips could also be used to trigger the enzymic catalytic reaction toward the chromogenic reaction of 3,3',5,5'-tetramethylbenzidine (TMB)-H2O2, thus providing another colorimetric sensing mode by using a smartphone App. In this smartphone-adapted visualization platform, the portable chemosensors could simultaneously achieve double detection modes at one electrode, which provided a new pathway for the accurate detection of H2S and circumvented the false-positive or negative errors during the detection process. Besides, by using the finite difference time domain (FDTD) simulation method, the in-depth mechanism, including the plasmonic effect and spatial electromagnetic field distribution, was explored to provide a possible reason for the excellent sensing performance of the dual-mode visualization platform. This work provides a new insight into the construction of the accurate, portable and smart sensing platform in the visual screening of H2S.


Asunto(s)
Estructuras Metalorgánicas , Teléfono Inteligente , Peróxido de Hidrógeno , Catálisis , Colorimetría
16.
Int J Biol Macromol ; 259(Pt 2): 129268, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199536

RESUMEN

With the rapid development of the Internet of Things, nanogenerator as a green energy collection technology has attracted great attention in various fields. Specifically, the natural renewable nanocellulose as a raw material can significantly improve the environmental friendliness of the nanocellulose-based nanogenerators, which also makes the nanocellulose based nanogenerators expected to further develop in areas such as wearable devices and sensor networks. This paper mainly reports the application of nanocellulose in nanogenerator, focusing on the sensor. The types, sources and preparation methods of nanocellulose are briefly introduced. At the same time, the special structure of nanocellulose highlights the advantages of nanocellulose in nanogenerators. Then, the application of nanocellulose-based nanogenerators in sensors is introduced. Finally, the future development prospects and shortcomings of this nanogenerator are discussed.


Asunto(s)
Internet , Dispositivos Electrónicos Vestibles , Tecnología
17.
Int J Biol Macromol ; 278(Pt 4): 134890, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39214836

RESUMEN

Fluorescent composites have widespread applications in many aspects. Wood-derived cellulose is a renewable, easily processed and biodegradable, and cellulose-based fluorescent composites are highly favored for in different fields. However, the existing cellulose-based fluorescent composites still have many urgent problems to be solved, such as unstable luminescence properties and easy shedding of luminescent substances, and the development of their practical applications is still a formidable challenge. Herein, a green and mild strategy for the in-situ controllable synthesis of cellulose-based fluorescent composites membrane (CFM) was developed. Firstly, delignified wood (DW) was modified with citric acid, and then lanthanide ions were introduced on modified DW through coordinated covalent bonds. Additionally, the luminescence mechanism of CFM is proposed. CFMs show adjustable color for decorative and light conversion and can be accurately identified for data protection, which increases the high value-added of cellulose-based composites. The stable luminescent properties were maintained after sonication for 30 min or solvent immersion for three months. Therefore, this work presents a new approach for the synthesis of CFM, which provides an environment-friendly strategy for manufacturing cellulose-based fluorescent materials, which is significant for the subsequent development of environment-friendly composites for anti-counterfeiting and decorative applications.


Asunto(s)
Celulosa , Color , Madera , Celulosa/química , Madera/química , Colorantes Fluorescentes/química
18.
ChemSusChem ; 17(9): e202301703, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38180149

RESUMEN

Exploration of greatly efficient and steady non-noble oxygen evolution reaction (OER) electrocatalysts is of great significance in improving the overall efficiency of energy density systems such as regenerative fuel cells, water electrolyzes, and metal-air batteries. Herein, inspired by hierarchical 3D porous structures with open microchannels of natural wood, CoO@NiFe LDH sandwich-like nanosheets were anchored on the carbonized wood (CW) via electrodeposition and calcination strategies. The strong interactions between CoO nanosheets and NiFe LDH nanosheets endow CoO@NiFe LDH/CW electrocatalyst with high catalytic properties toward the OER comparable to CoO/CW and NiFe LDH/CW. The optimized CoO@NiFe LDH/CW electrocatalyst demonstrates good OER catalytic performance with an overpotential of 230 mV at 100 mA cm-2. This work presents an innovative approach to utilize renewable resources for constructing advanced free-standing catalysts.

19.
J Colloid Interface Sci ; 660: 923-933, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38280285

RESUMEN

The flexible and self-healing supercapacitors (SCs) are considered to be promising smart energy storage devices. Nevertheless, the SCs integrated with flexibility, lightweight, pattern editability, self-healing capabilities and desirable electrochemical properties remain a challenge. Herein, an all-in-one self-healing SC fabricated with the free-standing hybrid film (TCMP) composed of the 2,2,6,6-tetramethylpiperidin-1-yloxy-oxidized cellulose nanofibers (TOCNs) carried carbon nanotubes (CNTs), manganese dioxide (MnO2) and polyaniline (PANI) as the electrode, polyvinyl alcohol/sulfuric acid (PVA/H2SO4) gel as the electrolyte and dynamically cross-linked cellulose nanofibers/PVA/sodium tetraborate decahydrate (CNF/PB) hydrogel as the self-healing electrode matrix is developed. The TCMP film electrodes are fabricated through a facile in-situ polymerization of MnO2 and PANI in TOCNs-dispersed CNTs composite networks, exhibiting lightweight, high electrical conductivity, flexibility, pattern editability and excellent electrochemical properties. Benefited from the hierarchically porous structure and high mechanical properties of TOCNs, excellent electrical conductivity of CNTs and the desirable synergistic effect of pseudocapacitance induced by MnO2 and PANI, the assembled SC with an interdigital structure demonstrated a high areal capacitance of 1108 mF cm-2 at 2 mA cm-2, large areal energy density of 153.7 µWh cm-2 at 1101.7 µW cm-2. A satisfactory bending cycle performance (capacitance retention up to 95 % after 200 bending deformations) and self-healing characteristics (∼90 % capacitance retention after 10 cut/repair cycles) are demonstrated for the TCMP-based symmetric SC, delivering a feasible strategy for electrochemical energy storage devices with excellent performance, designable patterns and desirable safe lifespan.

20.
Int J Biol Macromol ; : 136242, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39389492

RESUMEN

Traditional electrode materials for supercapacitors often face issues like high toxicity, cost, and non-renewability. To address these drawbacks, biomass-based alternatives are being explored, aligning with green development trends. Herein, carbonized wood (CW) with rich pore structure and redox-active lignin are combined to fabricate an all-wood-based sustainable supercapacitor electrode material. Due to its inherent porous structure, CW provides a larger surface area for accommodating active materials ion, enabling the electrode to achieve a higher lignin loading capacity of 2.82-11.68 mg/cm2. Furthermore, the utilization of lignin as a substitute for conventional transition metal-based pseudocapacitor material functionalized CW endows the electrode with exemplary electrochemical performance while guaranteeing the comprehensive sustainability of the electrode. This synergy confers the electrode with exceptional electrical performance, yielding an areal capacitance of 960.7 mF/cm2 at a current density of 1 mA/cm2. The symmetric supercapacitors (SSC) manufactured by this composite electrode can achieve a notable areal energy density of 0.14 mWh/cm2 and a power density of 15.98 mW/cm2, while maintaining an outstanding capacitance retention rate of 81 % after 50,000 cycles at 20 mA/cm2. The manufacture of CW-lignin electrode underscores the potential of utilizing renewable biomass resources as alternatives for developing high-performance energy storage applications, thereby reducing negative environmental impacts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA