Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(6): 3974-3983, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38299512

RESUMEN

Biologics, including proteins and antisense oligonucleotides (ASOs), face significant challenges when it comes to achieving intracellular delivery within specific organs or cells through systemic administrations. In this study, we present a novel approach for delivering proteins and ASOs to liver cells, both in vitro and in vivo, using conjugates that tether N-acetylated galactosamine (GalNAc)-functionalized, cell-penetrating polydisulfides (PDSs). The method involves the thiol-bearing cargo-mediated ring-opening polymerization of GalNAc-functionalized lipoamide monomers through the so-called aggregation-induced polymerization, leading to the formation of site-specific protein/ASO-PDS conjugates with narrow dispersity. The hepatocyte-selective intracellular delivery of the conjugates arises from a combination of factors, including first GalNAc binding with ASGPR receptors on liver cells, leading to cell immobilization, and the subsequent thiol-disulfide exchange occurring on the cell surface, promoting internalization. Our findings emphasize the critical role of the close proximity of the PDS backbone to the cell surface, as it governs the success of thiol-disulfide exchange and, consequently, cell penetration. These conjugates hold tremendous potential in overcoming the various biological barriers encountered during systemic and cell-specific delivery of biomacromolecular cargos, opening up new avenues for the diagnosis and treatment of a range of liver-targeting diseases.


Asunto(s)
Productos Biológicos , Galactosamina , Galactosamina/química , Hepatocitos/metabolismo , Oligonucleótidos Antisentido/química , Disulfuros/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Productos Biológicos/metabolismo
2.
J Environ Sci Health B ; 58(2): 120-130, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36734347

RESUMEN

The copper ion was detected rapidly by a novel sensing membrane in this paper for its damage to health and the environment. CdSe/ZnS QDs modified polyethersulfone membrane (QDs@PESM) was made by phase-inversion method using a membrane separation technique and quantum dots (QDs). When the sample passed through the membrane, the copper ions in the sample caused the membrane's fluorescence to be quenched. The fluorescence quenching value of the membrane is used to calculate the concentration of copper ions. With R2= 0.9964, Cu2+could be quantitatively detected over a wide concentration range (10-1000 µg/L). The method's LOD and LOQ were 4.27 and 14.23 µg/L, respectively. When the CdSe/ZnS QDs@PESM was used to analyze Cu2+ in various real drinks, including well water, baijiu, orange juice, beer, and milk, the recovery ranged from 79.1 to 123.9%, indicating that the CdSe/ZnS QDs@PESM can be used as a rapid, simple and reliable method to determine Cu2+ in various matrices.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Compuestos de Selenio , Cobre , Fluorescencia , Sulfuros
3.
J Environ Sci Health B ; 55(4): 388-395, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31868560

RESUMEN

To stipulate the rationale of spraying doses and to determine the safe interval period of boscalid suspension concentrate (SC), the degradation dynamics and residual levels were investigated in cucumber and soil using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Field trials were conducted according to Chinese Guideline on pesticide residue trials. Following application, the degradation kinetics was best ascribed to first-order kinetic models with half-life of 2.67-9.90 d in cucumber. Spraying boscalid SC at 1.5-fold the recommended dosage yield terminal residues, which are clearly lower than the maximum residue limit (MRL) established by China (MRL =5 mg.kg-1) in cucumber. At variance, the dissipation dynamics in soil did not fit to first-order kinetics and the half-life was more than 17 days, the finding which denotes that the degradation behavior of boscalid in soil proceeds slowly. It has therefore been shown that boscalid is safe for use on cucumbers under the recommended dosage.


Asunto(s)
Compuestos de Bifenilo/análisis , Cucumis sativus/química , Niacinamida/análogos & derivados , Residuos de Plaguicidas/análisis , Contaminantes del Suelo/análisis , Compuestos de Bifenilo/farmacocinética , China , Cromatografía Liquida/métodos , Contaminación de Alimentos/análisis , Fungicidas Industriales/análisis , Fungicidas Industriales/farmacocinética , Niacinamida/análisis , Niacinamida/farmacocinética , Contaminantes del Suelo/farmacocinética , Espectrometría de Masas en Tándem/métodos
5.
Mikrochim Acta ; 186(8): 504, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31270627

RESUMEN

Nanofibrous polyporous membranes imprinted with cyhexatin (CYT) were formed via the ordered distribution of the imprints in electrospun nanofibers. The MIPs have a high mass transfer rate and enhanced adsorption capacity. In addition, a printed carbon electrode with enhanced sensitivity was developed via electrochemical fabrication of reduced graphene oxide (rGO) and gold nanoparticles (AuNPs). The molecularly imprinted sensor exhibits excellent selectivity and sensitivity for CYT. The structure and morphology of the nanohybrid films were characterized by using scanning electron microscopy, atomic force microscopy and chronoamperometry. The sensing performances were evaluated by cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy by using hexacyanoferrate(IV) as an electrochemical probe. The electrode, best operated at a working potential of around 0.16 V (vs. Ag/AgCl), has a linear response in the 1-800 ng mL-1 CYT concentration range and a detection limit of 0.17 ng mL-1 (at S/N = 3). The sensor demonstrated satisfactory recoveries when applied to the determination of CYT in spiked pear samples. Graphical abstract Schematic presentation of the electrochemical sensor for detection of CYT.

6.
Chemphyschem ; 15(6): 1182-9, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24729527

RESUMEN

Sensitizers are responsible for the light harvesting and the charge injection in dye-sensitized solar cells (DSSCs). A fast dye-regeneration process is necessary to obtain highly efficient DSSC devices. Herein, dye-regeneration rates of two DSSC device types, that is, the reduction of immediately formed photo-oxidized sensitizers (ruthenium complex C106TBA and porphyrin LD14, k(ox)') by iodide ions (I(-)) and [Co(bpy)3](2+), and the oxidation of formed photo-reduced sensitizers (organic dye P1, k(re)') by triiodide ions (I3(-)) and the disulfide dimer (T2) are investigated by scanning electrochemical microscopy (SECM). We provide a thorough experimental verification of the feedback mode to compare the kinetics for dye-regeneration by using the above mentioned mediators. The charge recombination at the dye/semiconductor/electrolyte interface is further investigated by SECM. A theoretical model is applied to interpret the current response at the tip under short-circuit conditions, providing important information on factors that govern the dynamics of dye-regeneration onto the dye-sensitized heterojunction.

7.
Sci Rep ; 14(1): 4854, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418474

RESUMEN

A large area of coarse-grained saline soil is distributed in saline soil areas, and chlorine saline soil with a high salt content is a typical representative. The dynamic resilient modulus was accurately predicted using the California-bearing ratio (CBR) value to determine the relationship between the dynamic resilient modulus of coarse-grained chloride saline soil and its CBR value. Indoor dynamic triaxial tests and CBR tests were conducted to investigate the evolution of the dynamic resilient modulus (MR) and CBR of coarse-grained chlorine saline soil under the influence of the stress level, water content, and salt content. The test results showed that the dynamic resilient modulus increased with an increase in the confining pressure and bulk stress and decreased as the deviator stress increased; however, the CBR increased with an increase in the corresponding unit pressure. The higher the salt and water contents, the more obvious the influence of stress on the dynamic resilient modulus and CBR value. Under the same stress level, the decrease in the dynamic resilient modulus and CBR gradually increased with increasing salt and moisture content, and the effect of salt tended to be more significant than that of water. Based on the correlation between the dynamic resilient modulus and CBR revealed by the experiment, a more widely applicable model was selected from the existing theoretical models related to CBR for the regression analysis of the test data, and a prediction model of the dynamic resilient modulus based on the CBR value was proposed (MR = 21.06CBR0.52). This prediction model had a high correlation coefficient (R2 = 0.893) and could effectively predict the dynamic resilient modulus of coarse-grained chlorine saline soil using CBR values. The results provide a simple and reliable method for determining the design parameters of a coarse-grained saline soil subgrade.

8.
Zhonghua Yu Fang Yi Xue Za Zhi ; 47(9): 837-42, 2013 Sep.
Artículo en Zh | MEDLINE | ID: mdl-24351566

RESUMEN

OBJECTIVE: To study source apportionment of atmospheric PM10 (particle matter ≤ 10 µm in aerodynamic diameter) and PM2.5 (particle matter ≤ 2.5 µm in aerodynamic diameter) in Beijing,Urumqi and Qingdao, China. METHODS: The atmospheric particle samples of PM10 and PM2.5 collected from Beijing between May 17th and June 18th, 2005, from Urumqi between April 20th and June 1st, 2006 and from Qingdao between April 4th and May 15th, 2005, were detected to trace the source apportionment by factor analysis and enrichment factor methods. RESULTS: In Beijing, the source apportionment results derived from factor analysis model for PM10 were construction dust and soil sand dust (contributing rate of variance at 45.35%), industry dust, coal-combusted smoke and vehicle emissions (contributing rate at 31.83%), and biomass burning dust (13.57%). The main pollution element was Pb, while the content (median (minimum value-maximum value)was 0.216 (0.040-0.795) µg/m(3)) . As for PM2.5, the sources were construction dust and soil sand dust (38.86%), industry dust, coal-combusted smoke and vehicle emissions (25.73%), biomass burning dust (13.10%) and burning oil dust (11.92%). The main pollution element was Zn (0.365(0.126-0.808) µg/m(3)).In Urumqi, source apportionment results for PM10 were soil sand dust and coal-combusted dust(49.75%), industry dust, vehicle emissions and secondary particles dust (30.65%). The main characteristic pollution element was Cd (0.463(0.033-1.351) ng/m(3)). As for PM2.5, the sources were soil sand dust and coal-combusted dust (43.26%), secondary particles dust (22.29%), industry dust and vehicle emissions (20.50%). The main characteristic pollution element was As (14.599 (1.696-36.741) µg/m(3)).In Qingdao, source apportionment results for PM10 were construction dust (30.91%), vehicle emissions and industry dust (29.65%) and secondary particles dust (28.99%). The main characteristic pollution element was Pb (64.071 (5.846-346.831) µg/m(3)). As for PM2.5, the sources were secondary particles dust, industry dust and vehicle emissions (49.82%) and construction dust (33.71%). The main characteristic pollution element was Pb(57.340 (5.004-241.559) µg/m(3)).Enrichment factors of Zn, Pb, As and Cd in PM2.5 were higher than those in PM10 both in Beijing and Urumqi. CONCLUSION: The major sources of the atmospheric particles PM10 and PM2.5 in Beijing were cement dust from construction sites and sand dust from soil; while the major sources of those in Urumqi were pollution by smoke and sand dust from burning coal. The major sources of the atmospheric particles PM10 in Qingdao were cement dust from construction sites; however, the major sources of PM2.5 there were secondary particles dust, industry dust and vehicle emissions. According to our study, the heavy metal elements were likely to gather in PM2.5.


Asunto(s)
Contaminantes Atmosféricos/análisis , Ciudades , Estaciones del Año , China , Polvo/análisis , Monitoreo del Ambiente/métodos , Tamaño de la Partícula , Emisiones de Vehículos/análisis
9.
Materials (Basel) ; 16(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37374417

RESUMEN

The strength-formation mechanism for industrial-construction residue cement stabilization of crushed aggregate (IRCSCA) is not clear. To expand the application range for recycled micro-powders in road engineering, the dosages of eco-friendly hybrid recycled powders (HRPs) with different proportions of RBP and RCP affecting the strengths of cement-fly ash mortar at different ages, and the strength-formation mechanism, were studied with X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the early strength of the mortar was 2.62 times higher than that of the reference specimen when a 3/2 mass ratio of brick powder and concrete powder was mixed to form the HRP and replace some of the cement. With increasing HRP content substituted for fly ash, the strength of the cement mortar first increased and then decreased. When the HRP content was 35%, the compressive strength of the mortar was 1.56 times higher than that of the reference specimen, and the flexural strength was 1.51 times higher; XRD and SEM studies of the hydrated cement mixed with HRP showed that the amount of CH in the cement paste was reduced by the pozzolanic reaction of HRP at later hydration ages, and it was very useful in improving the compactness of the mortar. The XRD spectrum of the cement paste made with HRP indicated that the CH crystal plane orientation index R, with a diffraction angle peak of approximately 34.0, was consistent with the cement slurry strength evolution law, and this research provides a reference for the application of HRP to produce IRCSCA.

10.
Front Oncol ; 13: 1120515, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37064156

RESUMEN

Background: Hepatocellular carcinoma (HCC) is a primary malignant tumor responsible for approximately 90% of all liver cancers in humans, making it one of the leading public health problems worldwide. The gut microbiota is a complex microbial ecosystem that can influence tumor formation, metastasis, and resistance to treatment. Therefore, understanding the potential mechanisms of gut microbiota pathogenesis is critical for the prevention and treatment of HCC. Materials and methods: A search was conducted in the Web of Science Core Collection (WoSCC) database for English literature studies on the relationship between gut microbiota and HCC from 2011 to 2022. Bibliometric analysis tools such as VOSviewer, CiteSpace, and R Studio were used to analyze global trends and research hotspots in this field. Results: A total of 739 eligible publications, comprising of 383 articles and 356 reviews, were analyzed. Over the past 11 years, there has been a rapid increase in the annual number of publications and average citation levels, especially in the last five years. The majority of published articles on this topic originated from China (n=257, 34.78%), followed by the United States of America (n=203, 27.47%), and Italy (n=85, 11.50%). American scholars demonstrated high productivity, prominence, and academic environment influence in the research of this subject. Furthermore, the University of California, San Diego published the most papers (n=24) and had the highest average citation value (value=152.17) in the study of the relationship between gut microbiota and HCC. Schnabl B from the USA and Ohtani N from Japan were the authors with the highest number of publications and average citation value, respectively. Conclusion: In recent years, research on the gut microbiota's role in HCC has made rapid progress. Through a review of published literature, it has been found that the gut microbiota is crucial in the pathogenesis of HCC and in oncotherapy.

11.
J Hazard Mater ; 455: 131593, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37172378

RESUMEN

To understand the potential effects of intrinsic calcium compounds on sludge pyrolysis, the pyrolysis behavior of petrochemical sludge (PS), calcium carbonate blend PS (CaPS), and decalcified PS (DePS) were investigated using thermogravimetric analysis (TGA) and in-situ Fourier-transform infrared spectroscopy coupled with pyrolysis-gas chromatography and mass spectrometry (Py-GC/MS). The TGA results indicated that decalcification increased and decreased the energy barriers of PS decomposition in ranges 200-350 °C and 350-600 °C, respectively. In contrast, copyrolysis with CaCO3 decreased the activation energy (E) of the pseudoreaction phase 2 (PH2) and altered the mechanism model. Meanwhile, during copyrolysis, char deposition and interaction hindered CaCO3 decomposition. The two-dimensional correlation spectroscopy results, on the other hand, showed that the reaction priority of O-containing groups and CH- vibration of methyl groups were affected by both decalcification and CaCO3 copyrolysis. The Py-GC/MS results indicated that the three sludges mainly released hydrocarbons, N-containing organics, alcohols, aldehydes, and acids. During pyrolysis, CaCO3 also played a neutralization role, which reduced the release of pyrolytic acidic products. In addition, the increase of the pyrolysis temperature increased the hydrocarbon content. This research will guide the industrial application of sludge pyrolysis.

12.
Onco Targets Ther ; 16: 923-935, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965584

RESUMEN

Background: Pancreatic cancer is a deadly disease with a low five years survival rate, and chemotherapy remains the standard treatment for advanced cases. However, the efficacy of chemotherapy alone is limited, and there is a need for new treatment options. Recently, immune checkpoint inhibitors (ICIs), particularly programmed death-1 (PD-1) inhibitors, have shown promising results in various cancers, including pancreatic cancer. In this study, we explore the safety and efficacy of PD-1 inhibitors in combination with chemotherapy for advanced pancreatic cancer. Materials and Methods: A retrospective analysis was conducted on clinical data from 27 patients with advanced pancreatic cancer who were administered a combination of anti-PD-1 antibody and gemcitabine plus nab-paclitaxel (GnP) regimen. The study evaluated the safety of the treatment as well as the objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS). Results: In this study, treatment with a combination of anti-PD-1 antibody and GnP regimen for pancreatic cancer resulted in partial response (PR) for 10 out of 27 (37.04%) patients, stable disease (SD) for 10 (37.04%) patients, and progressive disease (PD) for 7 (25.92%) patients. The study found that the median OS (mOS) for these patients was 16.4 months [standard error (SE) = 1.117, 95% confidence interval (CI) 14.211-18.589], while the median PFS (mPFS) was 6.4 months (SE = 1.217, 95% CI 3.981-8.752). Subgroup analysis revealed that pancreatic cancer patients' Eastern Cooperative Oncology Group (ECOG) performance status (PS) (0 vs 1) and treatment cycles (≤6 cycles vs >6 cycles) significantly affected OS and PFS. Patients experienced mostly grade 1-2 adverse events (AEs), which were relieved through clinical treatment. Conclusion: The combination of GnP with anti-PD-1 antibodies shows promise as a potential treatment option for advanced pancreatic cancer.

13.
J Mol Model ; 29(11): 337, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37831300

RESUMEN

CONTEXT: Ultrathin overlays are preventive maintenance measures; the tensile and shear stresses generated inside a structural layer under vehicle load are greater than those of conventional thickness asphalt pavement. Therefore, asphalt binders must use high-viscosity and elasticity unique cementing materials to ensure stability. To investigate the modification mechanism of styrene-butadiene-styrene (SBS)/ethylene-butyl acrylate-glycidyl methacrylate copolymer (PTW) high-viscosity modified asphalt binder suitable for ultrathin overlays, the compatibility and molecular behavior of SBS/PTW high-viscosity modified asphalt binder were analyzed by the molecular dynamics (MD) method. These research results provide a reference for preparing ultrathin overlay high-performance composite modified asphalt binder. METHODS: SBS molecular models, PTW molecular models, asphalt binder molecular models, SBS/asphalt binder blend systems, and SBS/PTW/asphalt binder blend systems were sequentially constructed using Materials Studio (MS) software. The compatibility of SBS, PTW, and SBS/PTW with asphalt binder and the diffusion coefficients of SBS, PTW, and SBS/PTW in the asphalt binder were investigated separately using the MD method. The mechanical properties and molecular behavior of SBS, PTW, and SBS/PTW blended with asphalt binder were studied. The research results indicate that the compatibility of PTW with asphalt binder is better than that of SBS with asphalt binder. PTW can effectively decrease the solubility parameter of asphalt binder and improve the compatibility between SBS and asphalt binder. PTW effectively improves the diffusion coefficient and interaction energy of SBS in asphalt binder by up to 29% and 83%. In addition, SBS/PTW had a significant positive effect on the mechanical properties of the asphalt binders, increasing the elastic modulus (E), bulk modulus (K), and shear modulus (G) of the asphalt binder by 4.6%, 9.5%, and 3.5%, respectively, compared to SBS. The results indicate that the SBS/PTW modified asphalt binder composite can significantly improve the high-temperature shear resistance of asphalt binder. Meanwhile, SBS and PTW improve the self-aggregation behavior between asphalt binder component molecules. The distance between the center of mass of asphalt binder and resin system molecules is increased. PTW enhances the extensibility of the branched chains of asphalt binder component molecules and improves the interaction between asphalt binder components and the chains. This further enhances the density and stability of the asphalt binder molecular structure system, improving the physical properties of the asphalt binder.

14.
Onco Targets Ther ; 15: 609-627, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35676912

RESUMEN

Background: Hepatoid adenocarcinoma (HAC) of the lung (HAL) is a rare and aggressive extrahepatic adenocarcinoma with an unknown etiology and unfavorable prognosis, which is similar to the pathophysiological characteristics of hepatocellular carcinoma (HCC). Methods: We first presented a 67-year-old patient diagnosed with HAC in the right middle lobe of the lung. Then, a systematic literature search was performed for HAL cases recorded between 1990 and 2020 based on three databases. The clinicopathological features, therapeutic method, and prognosis of this rare disease were reviewed, and corresponding prognostic factors were explored using Kaplan-Meier (K-M) curve and Cox proportional hazards regression model. Additionally, the potential biological mechanisms of HAL were further explored and compared with HCC and lung adenocarcinoma (LUAD) based on online databases. Results: In the present study, we reported an HAL patient who underwent surgical resection combined with chemotherapy and succumbed to disease 13 months after surgery. Additionally, a total of 43 experimental studies with 49 HAL patients, including the present case, met the inclusion criteria and were included in the present review. We found that HAL is characterized by a male-dominated incidence and is more common in the right lung. Patients in the surgical subgroup have a better prognosis than those in the non-surgical subgroup (p = 0.034). Moreover, the Cox proportional hazards regression model demonstrated that surgical resection can significantly improve the prognosis of HAL patients (p = 0.016). HAL is a rare disease associated with gene mutations that has a distinctive cause and unique pathogenesis. Additionally, Afatinib and Gefitinib may be new effective agents to better combat HAL. Conclusion: In conclusion, males may exhibit an increased risk of developing HAL and poorer prognosis than females. Surgical resection combined with chemotherapy may prolong the survival of patients with HAL. HAL has its unique clinicopathological characteristics and biological mechanisms.

15.
J Mater Chem B ; 10(40): 8274-8281, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36134908

RESUMEN

The limited availability of bioinks has hindered the application of 3D bioprinting to tissue engineering, and bacterial infection is a serious threat to these applications. Aiming to solve this problem, a novel ε-poly-L-lysine (EPL)-derived antibacterial bioink has been developed for 3D bioprinting and tissue-engineering applications. Three glycidyl methacrylate (GMA)-modified EPL products, EPLGMA-1, EPLGMA-2, and EPLGMA-3, were prepared by reacting 3, 4, and 5 mL GMA with 5 g EPL, respectively. EPLGMA-1, EPLGMA-2, and EPLGMA-3 were photocurable and their corresponding photo-crosslinked hydrogels, EPLGMA-1H, EPLGMA-2H, and EPLGMA-3H, all exhibited very high antibacterial rates, good biocompatibility, good degradability, and promising mechanical properties. After EPLGMA-1H, EPLGMA-2H, and EPLGMA-3H with encapsulated chondrocytes were incubated for 4 weeks, EPLGMA-3H was the best one among them for tissue-engineering applications due to its most efficient tissue regeneration. Carrying chondrocytes, the EPLGMA-3 solution was printed into hydrogel products with high-fidelity shapes and high cell viability using a projection-based 3D bioprinter. Following the implantation of chondrocyte-loaded EPLGMA-3H samples into nude mice for 4 weeks, cartilage-like tissue was regenerated, suggesting that EPLGMA-3 is a promising antibacterial bioink for 3D bioprinting and tissue-engineering applications.


Asunto(s)
Bioimpresión , Animales , Ratones , Polilisina , Andamios del Tejido , Ratones Desnudos , Impresión Tridimensional , Hidrogeles/farmacología , Antibacterianos/farmacología
16.
J Mater Chem B ; 10(36): 7030-7044, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36043510

RESUMEN

3D bioprinting is a major area of interest in health sciences for customized manufacturing, but lacks specific bioinks to enhance the shape fidelity of 3D bioprinting and efficiency of tissue repair for particular clinical purposes. A naringin derived bioink, which contains 1.5 mM methylacryloyl naringin and 0.15 mM methylacryloyl gelatin, improves the fidelity of 3D bioprinting due to 405 nm light absorption of methylacryloyl naringin. The naringin derived bioink promotes the growth of chondrocytes due to preserving bioactivities of naringin and functions as a medical ingredient from which it has been described as a medical bioink in this study. It facilitates cartilage regeneration by upregulating the transcription of chondrogenesis-related genes like SOX9 and genes against oxidative stress like SOD1 and SOD2 and maintains chondrocytes active resulting from the significantly enhanced COL II/COL I ratio. According to a rabbit cartilage defect model, the proposed naringin derived medical bioink significantly improves the efficiency and quality of cartilage defect repair, suggesting that the bioink is suitable for cartilage defect repair applications and a feasible strategy is provided for the formulation of medical bioinks for specific clinical purposes.


Asunto(s)
Bioimpresión , Animales , Bioimpresión/métodos , Cartílago , Flavanonas , Gelatina , Impresión Tridimensional , Conejos , Superóxido Dismutasa-1 , Ingeniería de Tejidos/métodos
17.
Comput Intell Neurosci ; 2021: 2747940, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335710

RESUMEN

In high-paced and efficient life and work, fatigue is one of the important factors that cause accidents such as traffic and medical accidents. This study designs a feature map-based pruning strategy (PFM), which effectively reduces redundant parameters and reduces the time and space complexity of parallelized deep convolutional neural network (DCNN) training; a correction is proposed in the Map stage. The secant conjugate gradient method (CGMSE) realizes the fast convergence of the conjugate gradient method and improves the convergence speed of the network; in the Reduce stage, a load balancing strategy to control the load rate (LBRLA) is proposed to achieve fast and uniform data grouping to ensure the parallelization performance of the parallel system. Finally, the related fatigue algorithm's research and simulation based on the human eye are carried out on the PC. The human face and eye area are detected from the video image collected using the USB camera, and the frame difference method and the position information of the human eye on the face are used. To track the human eye area, extract the relevant human eye fatigue characteristics, combine the blink frequency, closed eye duration, PERCLOS, and other human eye fatigue determination mechanisms to determine the fatigue state, and test and verify the designed platform and algorithm through experiments. This system is designed to enable people who doze off, such as drivers, to discover their state in time through the system and reduce the possibility of accidents due to fatigue.


Asunto(s)
Macrodatos , Redes Neurales de la Computación , Algoritmos , Parpadeo , Simulación por Computador , Humanos
18.
Environ Sci Pollut Res Int ; 28(4): 4245-4252, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32939654

RESUMEN

Herein, field experiment trials were conducted at two different sites (Heilongjiang and Hubei Province) in China to determine the residual levels and dissipation kinetics of metalaxyl-M in rice grains, and paddy soil and water. A modified quick, easy, cheap, effective, rugged, and safe "QuEChES" method coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for determination of metalaxyl-M residual levels in different matrices. The method showed an excellent linear response (R2 > 0.99) over the concentration range of 0.01-0.50 mg kg-1 with satisfactory recovery rates in between 76.00 and 111.36%. The limits of quantification (LOQ) were estimated to be 0.010 mg kg-1 for all matrices. Half-lives of 0.27 to 10.83 days in rice plant, paddy soil, and water indicate that the analyte is easily degraded in the environment within a relatively short time. The terminal residues of metalaxyl-M in rice husks and rice grains were less than 0.05 mg kg-1. Dietary risk assessment showed that harvested rice treated with metalaxyl-M would not pose unreasonable risk to humans or the environment.


Asunto(s)
Oryza , Residuos de Plaguicidas , Contaminantes del Suelo , Alanina/análogos & derivados , China , Cromatografía Liquida , Humanos , Residuos de Plaguicidas/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Espectrometría de Masas en Tándem , Agua
19.
Food Chem ; 321: 126691, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32251922

RESUMEN

Low-alcohol Huangjiu (LAH), which contains reduced contents of ethanol and higher alcohols, is prepared by diluting original Huangjiu that has a high ethanol content, which leads to a weakened flavor (i.e., acidity). To increase acidity and reduce higher alcohols level in LAH, the gene ALD6 encoding aldehyde dehydrogenase was expressed in yeast HJ-1 under the control of the pPGK1 promoter and terminators with varying activities (tGIC1, tPGK1 and tCPS1) by scarless replacement at BAT2 locus, yielding the engineered strains HJΔB-AG, HJΔB-AP, and HJΔB-AC. The acetate concentration produced by HJΔB-AG, HJΔB-AP, and HJΔB-AC was 1.26-, 1.84-, and 2.51-fold of that of HJ-1, respectively. Furthermore, the concentration of higher alcohols produced by HJΔB-AG, HJΔB-AP, and HJΔB-AC decreased by 39.91%, 45.55%, and 52.80%, respectively. This study resulted in the creation of promising recombinant yeast strains and introduced a method that can be used for the high-quality production of LAH by acid-producing Saccharomyces cerevisiae.


Asunto(s)
Etanol/metabolismo , Microorganismos Modificados Genéticamente , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vino/microbiología , Acetatos/metabolismo , Alcoholes , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Fermentación , Microbiología de Alimentos , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Regiones Terminadoras Genéticas , Transaminasas/genética , Transaminasas/metabolismo
20.
Polymers (Basel) ; 12(1)2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31935897

RESUMEN

Herein, a novel method for molecularly imprinted polymers (MIPs) using methacrylic acid functionalized beta-cyclodextrin (MAA-ß-CD) monomer is presented, which was designed as a potential water-compatible composite for the controlled release of atropine (ATP). The molecularly imprinted microspheres with pH-sensitive characteristics were fabricated using thermally-initiated precipitation polymerization, employing ATP as a template molecule. The effects of different compounds and concentrations of cross-linking agents were systematically investigated. Uniform microspheres were obtained when the ratio between ATP, MAA-ß-CD, and trimethylolpropane trimethacrylate (TRIM) was 1:4:20 (mol/mol/mol) in polymerization system. The ATP loading equilibrium data was best suited to the Freundlich and Langmuir isotherm models. The in vitro drug release study was assessed under simulated oral administration conditions (pH 1.5 and 7.4). The potential usefulness of MIPs as drug delivery devices are much better than non-molecularly imprinted polymers (NIPs). The study shows that the prepared polymers are a pH stimuli-responsive system, which controlled the release of ATP, indicating the potential applications in the field of drug delivery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA