Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 587(7835): 588-593, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33239800

RESUMEN

The quantum spin properties of nitrogen-vacancy defects in diamond enable diverse applications in quantum computing and communications1. However, fluorescent nanodiamonds also have attractive properties for in vitro biosensing, including brightness2, low cost3 and selective manipulation of their emission4. Nanoparticle-based biosensors are essential for the early detection of disease, but they often lack the required sensitivity. Here we investigate fluorescent nanodiamonds as an ultrasensitive label for in vitro diagnostics, using a microwave field to modulate emission intensity5 and frequency-domain analysis6 to separate the signal from background autofluorescence7, which typically limits sensitivity. Focusing on the widely used, low-cost lateral flow format as an exemplar, we achieve a detection limit of 8.2 × 10-19 molar for a biotin-avidin model, 105 times more sensitive than that obtained using gold nanoparticles. Single-copy detection of HIV-1 RNA can be achieved with the addition of a 10-minute isothermal amplification step, and is further demonstrated using a clinical plasma sample with an extraction step. This ultrasensitive quantum diagnostics platform is applicable to numerous diagnostic test formats and diseases, and has the potential to transform early diagnosis of disease for the benefit of patients and populations.


Asunto(s)
Técnicas Biosensibles/métodos , Diagnóstico Precoz , Infecciones por VIH/diagnóstico , Infecciones por VIH/virología , VIH-1/genética , Nanodiamantes/química , ARN Viral/sangre , Avidina/química , Técnicas Biosensibles/instrumentación , Biotina/química , Fluorescencia , Oro/química , VIH-1/aislamiento & purificación , Humanos , Límite de Detección , Nanopartículas del Metal/química , Microfluídica/instrumentación , Microfluídica/métodos , Microondas , Técnicas de Amplificación de Ácido Nucleico , Papel , Plasma/virología , Teoría Cuántica , Sensibilidad y Especificidad , Imagen Individual de Molécula , Temperatura
2.
J Neurochem ; 161(2): 146-157, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35137414

RESUMEN

SARS-CoV-2 infection can damage the nervous system with multiple neurological manifestations described. However, there is limited understanding of the mechanisms underlying COVID-19 neurological injury. This is a cross-sectional exploratory prospective biomarker cohort study of 21 patients with COVID-19 neurological syndromes (Guillain-Barre Syndrome [GBS], encephalitis, encephalopathy, acute disseminated encephalomyelitis [ADEM], intracranial hypertension, and central pain syndrome) and 23 healthy COVID-19 negative controls. We measured cerebrospinal fluid (CSF) and serum biomarkers of amyloid processing, neuronal injury (neurofilament light), astrocyte activation (GFAp), and neuroinflammation (tissue necrosis factor [TNF] ɑ, interleukin [IL]-6, IL-1ß, IL-8). Patients with COVID-19 neurological syndromes had significantly reduced CSF soluble amyloid precursor protein (sAPP)-ɑ (p = 0.004) and sAPPß (p = 0.03) as well as amyloid ß (Aß) 40 (p = 5.2 × 10-8 ), Aß42 (p = 3.5 × 10-7 ), and Aß42/Aß40 ratio (p = 0.005) compared to controls. Patients with COVID-19 neurological syndromes showed significantly increased neurofilament light (NfL, p = 0.001) and this negatively correlated with sAPPɑ and sAPPß. Conversely, GFAp was significantly reduced in COVID-19 neurological syndromes (p = 0.0001) and this positively correlated with sAPPɑ and sAPPß. COVID-19 neurological patients also displayed significantly increased CSF proinflammatory cytokines and these negatively correlated with sAPPɑ and sAPPß. A sensitivity analysis of COVID-19-associated GBS revealed a non-significant trend toward greater impairment of amyloid processing in COVID-19 central than peripheral neurological syndromes. This pilot study raises the possibility that patients with COVID-19-associated neurological syndromes exhibit impaired amyloid processing. Altered amyloid processing was linked to neuronal injury and neuroinflammation but reduced astrocyte activation.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , COVID-19 , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , COVID-19/complicaciones , Estudios de Cohortes , Estudios Transversales , Humanos , Proyectos Piloto , Estudios Prospectivos , SARS-CoV-2
5.
Exp Cell Res ; 331(1): 38-45, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25263463

RESUMEN

Insulin resistance has been described in association with chronic liver disease for decades. Hepatocyte senescence has been demonstrated in chronic liver disease and as many as 80% of hepatocytes show a senescent phenotype in advanced liver disease. The aim of this study was to understand the role of hepatocyte senescence in the development of insulin resistance. Senescence was induced in HepG2 cells via oxidative stress. The insulin metabolic pathway was studied in control and senescent cells following insulin stimulation. GLUT2 and GLUT4 expressions were studied in HepG2 cells and human liver tissue. Further, GLUT2 and GLUT4 expressions were studied in three independent chronic liver disease cohorts. Signalling impairment distal to Akt in phosphorylation of AS160 and FoxO1 was evident in senescent HepG2 cells. Persistent nuclear localisation of FoxO1 was demonstrated in senescent cells despite insulin stimulation. Increased GLUT4 and decreased GLUT2 expressions were evident in senescent cells, human cirrhotic liver tissue and publically available liver disease datasets. Changes in GLUT expressions were associated with a poor clinical prognosis. In conclusion, selective insulin resistance is evident in senescent HepG2 cells and changes in GLUT expressions can be used as surrogate markers of hepatocyte senescence.


Asunto(s)
Biomarcadores/metabolismo , Senescencia Celular/efectos de los fármacos , Hepatocitos/patología , Resistencia a la Insulina , Insulina/farmacología , Hepatopatías/patología , Western Blotting , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hipoglucemiantes/farmacología , Hepatopatías/tratamiento farmacológico , Hepatopatías/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo
6.
Emerg Infect Dis ; 21(8): 1396-401, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26196216

RESUMEN

Since 2010, reports of infection with hepatitis E virus (HEV) have increased in England and Wales. Despite mounting evidence regarding the zoonotic potential of porcine HEV, there are limited data on its prevalence in pigs in the United Kingdom. We investigated antibody prevalence, active infection, and virus variation in serum and cecal content samples from 629 pigs at slaughter. Prevalence of antibodies to HEV was 92.8% (584/629), and HEV RNA was detected in 15% of cecal contents (93/629), 3% of plasma samples (22/629), and 2% of both (14/629). However, although HEV is prevalent in pigs in the United Kingdom and viremic pigs are entering the food chain, most (22/23) viral sequences clustered separately from the dominant type seen in humans. Thus, pigs raised in the United Kingdom are unlikely to be the main source of human HEV infections in the United Kingdom. Further research is needed to identify the source of these infections.


Asunto(s)
Virus de la Hepatitis E/patogenicidad , Hepatitis E/epidemiología , Enfermedades de los Porcinos/epidemiología , Porcinos/inmunología , Mataderos , Animales , Anticuerpos Antivirales/sangre , Estudios Transversales , Hepatitis E/virología , Infecciones/epidemiología , Infecciones/patología , Porcinos/virología , Reino Unido/epidemiología
7.
Front Immunol ; 15: 1334236, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444847

RESUMEN

Introduction: Initiation of antiretroviral treatment (ART) in patients early after HIV-infection and long-term suppression leads to low or undetectable levels of HIV RNA and cell-associated (CA) HIV DNA and RNA. Both CA-DNA and CA-RNA, overestimate the size of the HIV reservoir but CA-RNA as well as p24/cell-free viral RNA can be indicators of residual viral replication. This study describes HIV RNA amounts and levels of cytokines/soluble markers in 40 well-suppressed adolescents who initiated ART early in life and investigated which viral markers may be informative as endpoints in cure clinical trials within this population. Methods: Forty adolescents perinatally infected with HIV on suppressive ART for >5 years were enrolled in the CARMA study. HIV DNA and total or unspliced CA-RNA in PBMCs were analyzed by qPCR/RT-qPCR and dPCR/RT-dPCR. Cell-free HIV was determined using an ultrasensitive viral load (US-VL) assay. Plasma markers and p24 were analyzed by digital ELISA and correlations between total and unspliced HIV RNA and clinical markers, including age at ART, Western Blot score, levels of cytokines/inflammation markers or HIV CA-DNA, were tested. Results: CA-RNA was detected in two thirds of the participants and was comparable in RT-qPCR and RT-dPCR. Adolescents with undetectable CA-RNA showed significantly lower HIV DNA compared to individuals with detectable CA-RNA. Undetectable unspliced CA-RNA was positively associated with age at ART initiation and Western Blot score. We found that a higher concentration of TNF-α was predictive of higher CA-DNA and CA-RNA. Other clinical characteristics like US-VL, time to suppression, or percent CD4+ T-lymphocytes were not predictive of the CA-RNA in this cross-sectional study. Conclusions: Low CA-DNA after long-term suppressive ART is associated with lower CA-RNA, in concordance with other reports. Patients with low CA-RNA levels in combination with low CA-DNA and low Western Blot scores should be further investigated to characterize candidates for treatment interruption trials. Unspliced CA-RNA warrants further investigation as a marker that can be prioritized in paediatric clinical trials where the sample volume can be a significant limitation.


Asunto(s)
Ácidos Nucleicos Libres de Células , Infecciones por VIH , Humanos , Adolescente , Niño , Estudios Transversales , ARN , Antirretrovirales/uso terapéutico , Citocinas , Infecciones por VIH/tratamiento farmacológico , ADN
8.
Diagnostics (Basel) ; 12(5)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35626420

RESUMEN

The COVID-19 pandemic has unveiled a pressing need to expand the diagnostic landscape to permit high-volume testing in peak demand. Rapid nucleic acid testing based on isothermal amplification is a viable alternative to real-time reverse transcription polymerase chain reaction (RT-PCR) and can help close this gap. With the emergence of SARS-CoV-2 variants of concern, clinical validation of rapid molecular tests needs to demonstrate their ability to detect known variants, an essential requirement for a robust pan-SARS-CoV-2 assay. To date, there has been no clinical validation of reverse transcription recombinase polymerase amplification (RT-RPA) assays for SARS-CoV-2 variants. We performed a clinical validation of a one-pot multi-gene RT-RPA assay with the E and RdRP genes of SARS-CoV-2 as targets. The assay was validated with 91 nasopharyngeal samples, with a full range of viral loads, collected at University College London Hospitals. Moreover, the assay was tested with previously sequenced clinical samples, including eleven lineages of SARS-CoV-2. The rapid (20 min) RT-RPA assay showed high sensitivity and specificity, equal to 96% and 97%, respectively, compared to gold standard real-time RT-PCR. The assay did not show cross-reactivity with the panel of respiratory pathogens tested. We also report on a semi-quantitative analysis of the RT-RPA results with correlation to viral load equivalents. Furthermore, the assay could detect all eleven SARS-CoV-2 lineages tested, including four variants of concern (Alpha, Beta, Delta, and Omicron). This variant-proof SARS-CoV-2 assay offers a significantly faster and simpler alternative to RT-PCR, delivering sensitive and specific results with clinical samples.

9.
J Pediatric Infect Dis Soc ; 10(3): 295-301, 2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32678875

RESUMEN

BACKGROUND: Strategies aimed at antiretroviral therapy (ART)-free remission will target individuals with a limited viral reservoir. We investigated factors associated with low reservoir measured as total human immunodeficiency virus type 1 (HIV-1) DNA in peripheral blood mononuclear cells (PBMCs) in perinatal infection (PaHIV). METHODS: Children from 7 European centers in the Early Treated Perinatally HIV Infected Individuals: Improving Children's Actual Life (EPIICAL) consortium who commenced ART aged <2 years, and remained suppressed (viral load [VL] <50 copies/mL) for >5 years were included. Total HIV-1 DNA was measured by quantitative polymerase chain reaction per million PBMCs. Factors associated with total HIV-1 DNA were analyzed using generalized additive models. Age, VL at ART initiation, and baseline CD4% effects were tested including smoothing splines to test nonlinear association. RESULTS: Forty PaHIV, 27 (67.5%) female 21 (52.5%) Black/Black African, had total HIV-1 DNA measured; median 12 (IQR, 7.3-15.4) years after ART initiation. Eleven had total HIV-1 DNA <10 copies/106 PBMCs. HIV-1 DNA levels were positively associated with age and VL at ART initiation, baseline CD4%, and Western blot antibody score. Age at ART initiation presented a linear association (coefficient = 0.10 ± 0.001, P ≤ .001), the effect of VL (coefficient = 0.35 ± 0.1, P ≤ .001) noticeable >6 logs. The effect of CD4% (coefficient = 0.03 ± 0.01, P = .049) was not maintained >40%. CONCLUSIONS: In this PaHIV cohort, reduced total HIV-1 DNA levels were associated with younger age and lower VL at ART initiation. The impact of early-infant treatment on reservoir size persists after a decade of suppressive therapy.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , VIH-1 , Fármacos Anti-VIH/uso terapéutico , ADN Viral , Femenino , Infecciones por VIH/tratamiento farmacológico , VIH-1/genética , Humanos , Lactante , Leucocitos Mononucleares , Carga Viral
10.
Crit Care Explor ; 3(8): e0488, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34386774

RESUMEN

OBJECTIVES: Multiple mechanisms have been proposed to explain disease severity in coronavirus disease 2019. Therapeutic approaches need to be underpinned by sound biological rationale. We evaluated whether serum levels of a range of proposed coronavirus disease 2019 therapeutic targets discriminated between patients with mild or severe disease. DESIGN: A search of ClinicalTrials.gov identified coronavirus disease 2019 immunological drug targets. We subsequently conducted a retrospective observational cohort study investigating the association of serum biomarkers within the first 5 days of hospital admission relating to putative therapeutic biomarkers with illness severity and outcome. SETTING: University College London, a tertiary academic medical center in the United Kingdom. PATIENTS: Patients admitted to hospital with a diagnosis of coronavirus disease 2019. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Eighty-six patients were recruited, 44 (51%) with mild disease and 42 (49%) with severe disease. We measured levels of 10 cytokines/signaling proteins related to the most common therapeutic targets (granulocyte-macrophage colony-stimulating factor, interferon-α2a, interferon-ß, interferon-γ, interleukin-1ß, interleukin-1 receptor antagonist, interleukin-6, interleukin-7, interleukin-8, tumor necrosis factor-α), immunoglobulin G antibodies directed against either coronavirus disease 2019 spike protein or nucleocapsid protein, and neutralization titers of antibodies. Four-hundred seventy-seven randomized trials, including 168 different therapies against 83 different pathways, were identified. Six of the 10 markers (interleukin-6, interleukin-7, interleukin-8, interferon-α2a, interferon-ß, interleukin-1 receptor antagonist) discriminated between patients with mild and severe disease, although most were similar or only modestly raised above that seen in healthy volunteers. A similar proportion of patients with mild or severe disease had detectable spike protein or nucleocapsid protein immunoglobulin G antibodies with equivalent levels between groups. Neutralization titers were higher among patients with severe disease. CONCLUSIONS: Some therapeutic and prognostic biomarkers may be useful in identifying coronavirus disease 2019 patients who may benefit from specific immunomodulatory therapies, particularly interleukin-6. However, biomarker absolute values often did not discriminate between patients with mild and severe disease or death, implying that these immunomodulatory treatments may be of limited benefit.

11.
Cell Rep ; 34(12): 108890, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33713594

RESUMEN

Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines show protective efficacy, which is most likely mediated by neutralizing antibodies recognizing the viral entry protein, spike. Because new SARS-CoV-2 variants are emerging rapidly, as exemplified by the B.1.1.7, B.1.351, and P.1 lineages, it is critical to understand whether antibody responses induced by infection with the original SARS-CoV-2 virus or current vaccines remain effective. In this study, we evaluate neutralization of a series of mutated spike pseudotypes based on divergence from SARS-CoV and then compare neutralization of the B.1.1.7 spike pseudotype and individual mutations. Spike-specific monoclonal antibody neutralization is reduced dramatically; in contrast, polyclonal antibodies from individuals infected in early 2020 remain active against most mutated spike pseudotypes, but potency is reduced in a minority of samples. This work highlights that changes in SARS-CoV-2 spike can alter neutralization sensitivity and underlines the need for effective real-time monitoring of emerging mutations and their effect on vaccine efficacy.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , COVID-19/virología , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos , COVID-19/inmunología , COVID-19/metabolismo , Vacunas contra la COVID-19/inmunología , Células HEK293 , Humanos , Pruebas de Neutralización/métodos , Mutación Puntual , Receptores Virales/genética , Receptores Virales/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología
12.
Lancet Infect Dis ; 21(9): 1246-1256, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33857406

RESUMEN

BACKGROUND: Emergence of variants with specific mutations in key epitopes in the spike protein of SARS-CoV-2 raises concerns pertinent to mass vaccination campaigns and use of monoclonal antibodies. We aimed to describe the emergence of the B.1.1.7 variant of concern (VOC), including virological characteristics and clinical severity in contemporaneous patients with and without the variant. METHODS: In this cohort study, samples positive for SARS-CoV-2 on PCR that were collected from Nov 9, 2020, for patients acutely admitted to one of two hospitals on or before Dec 20, 2020, in London, UK, were sequenced and analysed for the presence of VOC-defining mutations. We fitted Poisson regression models to investigate the association between B.1.1.7 infection and severe disease (defined as point 6 or higher on the WHO ordinal scale within 14 days of symptoms or positive test) and death within 28 days of a positive test and did supplementary genomic analyses in a cohort of chronically shedding patients and in a cohort of remdesivir-treated patients. Viral load was compared by proxy, using PCR cycle threshold values and sequencing read depths. FINDINGS: Of 496 patients with samples positive for SARS-CoV-2 on PCR and who met inclusion criteria, 341 had samples that could be sequenced. 198 (58%) of 341 had B.1.1.7 infection and 143 (42%) had non-B.1.1.7 infection. We found no evidence of an association between severe disease and death and lineage (B.1.1.7 vs non-B.1.1.7) in unadjusted analyses (prevalence ratio [PR] 0·97 [95% CI 0·72-1·31]), or in analyses adjusted for hospital, sex, age, comorbidities, and ethnicity (adjusted PR 1·02 [0·76-1·38]). We detected no B.1.1.7 VOC-defining mutations in 123 chronically shedding immunocompromised patients or in 32 remdesivir-treated patients. Viral load by proxy was higher in B.1.1.7 samples than in non-B.1.1.7 samples, as measured by cycle threshold value (mean 28·8 [SD 4·7] vs 32·0 [4·8]; p=0·0085) and genomic read depth (1280 [1004] vs 831 [682]; p=0·0011). INTERPRETATION: Emerging evidence exists of increased transmissibility of B.1.1.7, and we found increased virus load by proxy for B.1.1.7 in our data. We did not identify an association of the variant with severe disease in this hospitalised cohort. FUNDING: University College London Hospitals NHS Trust, University College London/University College London Hospitals NIHR Biomedical Research Centre, Engineering and Physical Sciences Research Council.


Asunto(s)
COVID-19/virología , Genoma Viral , SARS-CoV-2/genética , Índice de Severidad de la Enfermedad , Secuenciación Completa del Genoma , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Londres , Masculino , Persona de Mediana Edad , Filogenia , Reino Unido , Carga Viral , Esparcimiento de Virus
13.
Med ; 2(9): 1093-1109.e6, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34414384

RESUMEN

BACKGROUND: Differences in humoral immunity to coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), between children and adults remain unexplained, and the effect of underlying immune dysfunction or suppression is unknown. Here, we sought to examine the antibody immune competence of children and adolescents with prevalent inflammatory rheumatic diseases, juvenile idiopathic arthritis (JIA), juvenile dermatomyositis (JDM), and juvenile systemic lupus erythematosus (JSLE) against the seasonal human coronavirus (HCoV)-OC43 that frequently infects this age group. METHODS: Sera were collected from JIA (n = 118), JDM (n = 49), and JSLE (n = 30) patients and from healthy control (n = 54) children and adolescents prior to the coronavirus disease 19 (COVID-19) pandemic. We used sensitive flow-cytometry-based assays to determine titers of antibodies that reacted with the spike and nucleoprotein of HCoV-OC43 and cross-reacted with the spike and nucleoprotein of SARS-CoV-2, and we compared them with respective titers in sera from patients with multisystem inflammatory syndrome in children and adolescents (MIS-C). FINDINGS: Despite immune dysfunction and immunosuppressive treatment, JIA, JDM, and JSLE patients maintained comparable or stronger humoral responses than healthier peers, which was dominated by immunoglobulin G (IgG) antibodies to HCoV-OC43 spike, and harbored IgG antibodies that cross-reacted with SARS-CoV-2 spike. In contrast, responses to HCoV-OC43 and SARS-CoV-2 nucleoproteins exhibited delayed age-dependent class-switching and were not elevated in JIA, JDM, and JSLE patients, which argues against increased exposure. CONCLUSIONS: Consequently, autoimmune rheumatic diseases and their treatment were associated with a favorable ratio of spike to nucleoprotein antibodies. FUNDING: This work was supported by a Centre of Excellence Centre for Adolescent Rheumatology Versus Arthritis grant, 21593, UKRI funding reference MR/R013926/1, the Great Ormond Street Children's Charity, Cure JM Foundation, Myositis UK, Lupus UK, and the NIHR Biomedical Research Centres at GOSH and UCLH. This work was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK, the UK Medical Research Council, and the Wellcome Trust.


Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Coronavirus Humano OC43 , Enfermedades Reumáticas , Adolescente , Adulto , Anticuerpos Antivirales , Formación de Anticuerpos , COVID-19/complicaciones , Niño , Humanos , Inmunoglobulina G , Nucleoproteínas , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Síndrome de Respuesta Inflamatoria Sistémica
14.
EClinicalMedicine ; 39: 101070, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34401683

RESUMEN

BACKGROUND: A high prevalence of antiphospholipid antibodies has been reported in case series of patients with neurological manifestations and COVID-19; however, the pathogenicity of antiphospholipid antibodies in COVID-19 neurology remains unclear. METHODS: This single-centre cross-sectional study included 106 adult patients: 30 hospitalised COVID-neurological cases, 47 non-neurological COVID-hospitalised controls, and 29 COVID-non-hospitalised controls, recruited between March and July 2020. We evaluated nine antiphospholipid antibodies: anticardiolipin antibodies [aCL] IgA, IgM, IgG; anti-beta-2 glycoprotein-1 [aß2GPI] IgA, IgM, IgG; anti-phosphatidylserine/prothrombin [aPS/PT] IgM, IgG; and anti-domain I ß2GPI (aD1ß2GPI) IgG. FINDINGS: There was a high prevalence of antiphospholipid antibodies in the COVID-neurological (73.3%) and non-neurological COVID-hospitalised controls (76.6%) in contrast to the COVID-non-hospitalised controls (48.2%). aPS/PT IgG titres were significantly higher in the COVID-neurological group compared to both control groups (p < 0.001). Moderate-high titre of aPS/PT IgG was found in 2 out of 3 (67%) patients with acute disseminated encephalomyelitis [ADEM]. aPS/PT IgG titres negatively correlated with oxygen requirement (FiO2 R=-0.15 p = 0.040) and was associated with venous thromboembolism (p = 0.043). In contrast, aCL IgA (p < 0.001) and IgG (p < 0.001) was associated with non-neurological COVID-hospitalised controls compared to the other groups and correlated positively with d-dimer and creatinine but negatively with FiO2. INTERPRETATION: Our findings show that aPS/PT IgG is associated with COVID-19-associated ADEM. In contrast, aCL IgA and IgG are seen much more frequently in non-neurological hospitalised patients with COVID-19. Characterisation of antiphospholipid antibody persistence and potential longitudinal clinical impact are required to guide appropriate management. FUNDING: This work is supported by UCL Queen Square Biomedical Research Centre (BRC) and Moorfields BRC grants (#560441 and #557595). LB is supported by a Wellcome Trust Fellowship (222102/Z/20/Z). RWP is supported by an Alzheimer's Association Clinician Scientist Fellowship (AACSF-20-685780) and the UK Dementia Research Institute. KB is supported by the Swedish Research Council (#2017-00915) and the Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986). HZ is a Wallenberg Scholar supported by grants from the Swedish Research Council (#2018-02532), the European Research Council (#681712), Swedish State Support for Clinical Research (#ALFGBG-720931), the Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016862), and theUK Dementia Research Institute at UCL. BDM is supported by grants from the MRC/UKRI (MR/V007181/1), MRC (MR/T028750/1) and Wellcome (ISSF201902/3). MSZ, MH and RS are supported by the UCL/UCLH NIHR Biomedical Research Centre and MSZ is supported by Queen Square National Brain Appeal.

15.
Brain Commun ; 3(3): fcab099, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34396099

RESUMEN

Preliminary pathological and biomarker data suggest that SARS-CoV-2 infection can damage the nervous system. To understand what, where and how damage occurs, we collected serum and CSF from patients with COVID-19 and characterized neurological syndromes involving the PNS and CNS (n = 34). We measured biomarkers of neuronal damage and neuroinflammation, and compared these with non-neurological control groups, which included patients with (n = 94) and without (n = 24) COVID-19. We detected increased concentrations of neurofilament light, a dynamic biomarker of neuronal damage, in the CSF of those with CNS inflammation (encephalitis and acute disseminated encephalomyelitis) [14 800 pg/ml (400, 32 400)], compared to those with encephalopathy [1410 pg/ml (756, 1446)], peripheral syndromes (Guillain-Barré syndrome) [740 pg/ml (507, 881)] and controls [872 pg/ml (654, 1200)]. Serum neurofilament light levels were elevated across patients hospitalized with COVID-19, irrespective of neurological manifestations. There was not the usual close correlation between CSF and serum neurofilament light, suggesting serum neurofilament light elevation in the non-neurological patients may reflect peripheral nerve damage in response to severe illness. We did not find significantly elevated levels of serum neurofilament light in community cases of COVID-19 arguing against significant neurological damage. Glial fibrillary acidic protein, a marker of astrocytic activation, was not elevated in the CSF or serum of any group, suggesting astrocytic activation is not a major mediator of neuronal damage in COVID-19.

16.
Elife ; 102021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34323691

RESUMEN

Background: The degree of heterotypic immunity induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains is a major determinant of the spread of emerging variants and the success of vaccination campaigns, but remains incompletely understood. Methods: We examined the immunogenicity of SARS-CoV-2 variant B.1.1.7 (Alpha) that arose in the United Kingdom and spread globally. We determined titres of spike glycoprotein-binding antibodies and authentic virus neutralising antibodies induced by B.1.1.7 infection to infer homotypic and heterotypic immunity. Results: Antibodies elicited by B.1.1.7 infection exhibited significantly reduced recognition and neutralisation of parental strains or of the South Africa variant B.1.351 (Beta) than of the infecting variant. The drop in cross-reactivity was significantly more pronounced following B.1.1.7 than parental strain infection. Conclusions: The results indicate that heterotypic immunity induced by SARS-CoV-2 variants is asymmetric. Funding: This work was supported by the Francis Crick Institute and the Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/inmunología , COVID-19/epidemiología , Reacciones Cruzadas , Humanos , Padres , Sudáfrica/epidemiología , Glicoproteína de la Espiga del Coronavirus , Reino Unido/epidemiología
17.
medRxiv ; 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33532784

RESUMEN

The coronaviral spike is the dominant viral antigen and the target of neutralizing antibodies. We show that SARS-CoV-2 spike binds biliverdin and bilirubin, the tetrapyrrole products of haem metabolism, with nanomolar affinity. Using cryo-electron microscopy and X-ray crystallography we mapped the tetrapyrrole interaction pocket to a deep cleft on the spike N-terminal domain (NTD). At physiological concentrations, biliverdin significantly dampened the reactivity of SARS-CoV-2 spike with immune sera and inhibited a subset of neutralizing antibodies. Access to the tetrapyrrole-sensitive epitope is gated by a flexible loop on the distal face of the NTD. Accompanied by profound conformational changes in the NTD, antibody binding requires relocation of the gating loop, which folds into the cleft vacated by the metabolite. Our results indicate that the virus co-opts the haem metabolite for the evasion of humoral immunity via allosteric shielding of a sensitive epitope and demonstrate the remarkable structural plasticity of the NTD.

18.
Sci Adv ; 7(22)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33888467

RESUMEN

The coronaviral spike is the dominant viral antigen and the target of neutralizing antibodies. We show that SARS-CoV-2 spike binds biliverdin and bilirubin, the tetrapyrrole products of heme metabolism, with nanomolar affinity. Using cryo-electron microscopy and x-ray crystallography, we mapped the tetrapyrrole interaction pocket to a deep cleft on the spike N-terminal domain (NTD). At physiological concentrations, biliverdin significantly dampened the reactivity of SARS-CoV-2 spike with immune sera and inhibited a subset of neutralizing antibodies. Access to the tetrapyrrole-sensitive epitope is gated by a flexible loop on the distal face of the NTD. Accompanied by profound conformational changes in the NTD, antibody binding requires relocation of the gating loop, which folds into the cleft vacated by the metabolite. Our results indicate that SARS-CoV-2 spike NTD harbors a dominant epitope, access to which can be controlled by an allosteric mechanism that is regulated through recruitment of a metabolite.


Asunto(s)
COVID-19/inmunología , Hemo/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/inmunología , Bilirrubina/metabolismo , Biliverdina/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Epítopos , Humanos , Sueros Inmunes , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad
19.
Lancet HIV ; 7(9): e620-e628, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32890497

RESUMEN

BACKGROUND: Antiretroviral therapy (ART) scale-up in sub-Saharan Africa combined with weak routine virological monitoring has driven increasing HIV drug resistance. We investigated ART failure, drug resistance, and early mortality among patients with HIV admitted to hospital in Malawi. METHODS: This observational cohort study was nested within the rapid urine-based screening for tuberculosis to reduce AIDS-related mortality in hospitalised patients in Africa (STAMP) trial, which recruited unselected (ie, irrespective of clinical presentation) adult (aged ≥18 years) patients with HIV-1 at admission to medical wards. Patients were included in our observational cohort study if they were enrolled at the Malawi site (Zomba Central Hospital) and were taking ART for at least 6 months at admission. Patients who met inclusion criteria had frozen plasma samples tested for HIV-1 viral load. Those with HIV-1 RNA of at least 1000 copies per mL had drug resistance testing by ultra-deep sequencing, with drug resistance defined as intermediate or high-level resistance using the Stanford HIVDR program. Mortality risk was calculated 56 days from enrolment. Patients were censored at death, at 56 days, or at last contact if lost to follow-up. The modelling strategy addressed the causal association between HIV multidrug resistance and mortality, excluding factors on the causal pathway (most notably, CD4 cell count, clinical signs of advanced HIV, and poor functional and nutritional status). FINDINGS: Of 1316 patients with HIV enrolled in the STAMP trial at the Malawi site between Oct 26, 2015, and Sept 19, 2017, 786 had taken ART for at least 6 months. 252 (32%) of 786 patients had virological failure (viral load ≥1000 copies per mL). Mean age was 41·5 years (SD 11·4) and 528 (67%) of 786 were women. Of 237 patients with HIV drug resistance results available, 195 (82%) had resistance to lamivudine, 128 (54%) to tenofovir, and 219 (92%) to efavirenz. Resistance to at least two drugs was common (196, 83%), and this was associated with increased mortality (adjusted hazard ratio 1·7, 95% CI 1·2-2·4; p=0·0042). INTERPRETATION: Interventions are urgently needed and should target ART clinic, hospital, and post-hospital care, including differentiated care focusing on patients with advanced HIV, rapid viral load testing, and routine access to drug resistance testing. Prompt diagnosis and switching to alternative ART could reduce early mortality among inpatients with HIV. FUNDING: Joint Global Health Trials Scheme of the Medical Research Council, UK Department for International Development, and Wellcome Trust.


Asunto(s)
Farmacorresistencia Viral , Infecciones por VIH/epidemiología , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , Carga Viral , Adulto , Terapia Antirretroviral Altamente Activa , Duración de la Terapia , Femenino , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/mortalidad , VIH-1/genética , Hospitalización , Humanos , Malaui/epidemiología , Masculino , Mortalidad , ARN Viral , Insuficiencia del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA