Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867053

RESUMEN

The initial rise of molecular oxygen (O2) shortly after the Archaean-Proterozoic transition 2.5 billion years ago was more complex than the single step-change once envisioned. Sulfur mass-independent fractionation records suggest that the rise of atmospheric O2 was oscillatory, with multiple returns to an anoxic state until perhaps 2.2 billion years ago1-3. Yet few constraints exist for contemporaneous marine oxygenation dynamics, precluding a holistic understanding of planetary oxygenation. Here we report thallium (Tl) isotope ratio and redox-sensitive element data for marine shales from the Transvaal Supergroup, South Africa. Synchronous with sulfur isotope evidence of atmospheric oxygenation in the same shales3, we found lower authigenic 205Tl/203Tl ratios indicative of widespread manganese oxide burial on an oxygenated seafloor and higher redox-sensitive element abundances consistent with expanded oxygenated waters. Both signatures disappear when the sulfur isotope data indicate a brief return to an anoxic atmospheric state. Our data connect recently identified atmospheric O2 dynamics on early Earth with the marine realm, marking an important turning point in Earth's redox history away from heterogeneous and highly localized 'oasis'-style oxygenation.

2.
Sci Adv ; 6(50)2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33298445

RESUMEN

Plate subduction greatly influences the physical and chemical characteristics of Earth's surface and deep interior, yet the timing of its initiation is debated because of the paucity of exposed rocks from Earth's early history. We show that the titanium isotopic composition of orthogneisses from the Acasta Gneiss Complex spanning the Hadean to Eoarchean transition falls on two distinct magmatic differentiation trends. Hadean tonalitic gneisses show titanium isotopic compositions comparable to modern evolved tholeiitic magmas, formed by differentiation of dry parental magmas in plume settings. Younger Eoarchean granitoid gneisses have titanium isotopic compositions comparable to modern calc-alkaline magmas produced in convergent arcs. Our data therefore document a shift from tholeiitic- to calc-alkaline-style magmatism between 4.02 and 3.75 billion years (Ga) in the Slave craton.

3.
Science ; 370(6515): 446-449, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33093107

RESUMEN

The role that iron played in the oxygenation of Earth's surface is equivocal. Iron could have consumed molecular oxygen when Fe3+-oxyhydroxides formed in the oceans, or it could have promoted atmospheric oxidation by means of pyrite burial. Through high-precision iron isotopic measurements of Archean-Paleoproterozoic sediments and laboratory grown pyrites, we show that the triple iron isotopic composition of Neoarchean-Paleoproterozoic pyrites requires both extensive marine iron oxidation and sulfide-limited pyritization. Using an isotopic fractionation model informed by these data, we constrain the relative sizes of sedimentary Fe3+-oxyhydroxide and pyrite sinks for Neoarchean marine iron. We show that pyrite burial could have resulted in molecular oxygen export exceeding local Fe2+ oxidation sinks, thereby contributing to early episodes of transient oxygenation of Archean surface environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA