Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5360, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918375

RESUMEN

Oxygen homeostasis is maintained in plants and animals by O2-sensing enzymes initiating adaptive responses to low O2 (hypoxia). Recently, the O2-sensitive enzyme ADO was shown to initiate degradation of target proteins RGS4/5 and IL32 via the Cysteine/Arginine N-degron pathway. ADO functions by catalysing oxidation of N-terminal cysteine residues, but despite multiple proteins in the human proteome having an N-terminal cysteine, other endogenous ADO substrates have not yet been identified. This could be because alternative modifications of N-terminal cysteine residues, including acetylation, prevent ADO-catalysed oxidation. Here we investigate the relationship between ADO-catalysed oxidation and NatA-catalysed acetylation of a broad range of protein sequences with N-terminal cysteines. We present evidence that human NatA catalyses N-terminal cysteine acetylation in vitro and in vivo. We then show that sequences downstream of the N-terminal cysteine dictate whether this residue is oxidised or acetylated, with ADO preferring basic and aromatic amino acids and NatA preferring acidic or polar residues. In vitro, the two modifications appear to be mutually exclusive, suggesting that distinct pools of N-terminal cysteine proteins may be acetylated or oxidised. These results reveal the sequence determinants that contribute to N-terminal cysteine protein modifications, with implications for O2-dependent protein stability and the hypoxic response.


Asunto(s)
Cisteína , Oxidación-Reducción , Estabilidad Proteica , Cisteína/metabolismo , Cisteína/química , Acetilación , Humanos , Oxígeno/metabolismo , Oxígeno/química , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Células HEK293
2.
FEBS J ; 289(18): 5426-5439, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34346181

RESUMEN

Cysteine dioxygenases, 3-mercaptopropionate dioxygenases and mercaptosuccinate dioxygenases are all thiol dioxygenases (TDOs) that catalyse oxidation of thiol molecules to sulphinates. They are Fe(II)-dependent dioxygenases with a cupin fold that supports a 3xHis metal-coordinating triad at the active site. They also have other, broadly common features including arginine residues involved in substrate carboxylate binding and a conserved trio of residues at the active site featuring a tyrosine important in substrate binding catalysis. Recently, N-terminal cysteinyl dioxygenase enzymes (NCOs) have been identified in plants (plant cysteine oxidases, PCOs), while human 2-aminoethanethiol dioxygenase (ADO) has been shown to act as both an NCO and a small molecule TDO. Although the cupin fold and 3xHis Fe(II)-binding triad seen in the small molecule TDOs are conserved in NCOs, other active site features and aspects of the overall protein architecture are quite different. Furthermore, the PCOs and ADO appear to act as biological O2 sensors, as shown by kinetic analyses and hypoxic regulation of the stability of their biological targets (N-terminal cysteine oxidation triggers protein degradation via the N-degron pathway). Here, we discuss the emergence of these two subclasses of TDO including structural features that could dictate their ability to bind small molecule or polypeptide substrates. These structural features may also underpin the O2 -sensing capability of the NCOs. Understanding how these enzymes interact with their substrates, including O2 , could reveal strategies to manipulate their activity, relevant to hypoxic disease states and plant adaptive responses to flooding.


Asunto(s)
Dioxigenasas , Oxígeno , Plantas , Arginina , Cisteamina , Cisteína/metabolismo , Cisteína-Dioxigenasa/genética , Cisteína-Dioxigenasa/metabolismo , Dioxigenasas/metabolismo , Compuestos Ferrosos , Oxígeno/metabolismo , Plantas/enzimología , Compuestos de Sulfhidrilo , Tirosina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA