RESUMEN
T cells are critical effectors of cancer immunotherapies, but little is known about their gene expression programs in diffuse gliomas. Here, we leverage single-cell RNA sequencing (RNA-seq) to chart the gene expression and clonal landscape of tumor-infiltrating T cells across 31 patients with isocitrate dehydrogenase (IDH) wild-type glioblastoma and IDH mutant glioma. We identify potential effectors of anti-tumor immunity in subsets of T cells that co-express cytotoxic programs and several natural killer (NK) cell genes. Analysis of clonally expanded tumor-infiltrating T cells further identifies the NK gene KLRB1 (encoding CD161) as a candidate inhibitory receptor. Accordingly, genetic inactivation of KLRB1 or antibody-mediated CD161 blockade enhances T cell-mediated killing of glioma cells in vitro and their anti-tumor function in vivo. KLRB1 and its associated transcriptional program are also expressed by substantial T cell populations in other human cancers. Our work provides an atlas of T cells in gliomas and highlights CD161 and other NK cell receptors as immunotherapy targets.
Asunto(s)
Glioma/inmunología , Subfamilia B de Receptores Similares a Lectina de Células NK/genética , Linfocitos T/inmunología , Animales , Antígenos de Neoplasias , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Glioma/genética , Células Asesinas Naturales/inmunología , Lectinas Tipo C/genética , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Receptores de Superficie Celular/genética , Análisis de la Célula Individual , Subgrupos de Linfocitos T/inmunología , Linfocitos T/citología , Escape del TumorRESUMEN
Diverse genetic, epigenetic, and developmental programs drive glioblastoma, an incurable and poorly understood tumor, but their precise characterization remains challenging. Here, we use an integrative approach spanning single-cell RNA-sequencing of 28 tumors, bulk genetic and expression analysis of 401 specimens from the The Cancer Genome Atlas (TCGA), functional approaches, and single-cell lineage tracing to derive a unified model of cellular states and genetic diversity in glioblastoma. We find that malignant cells in glioblastoma exist in four main cellular states that recapitulate distinct neural cell types, are influenced by the tumor microenvironment, and exhibit plasticity. The relative frequency of cells in each state varies between glioblastoma samples and is influenced by copy number amplifications of the CDK4, EGFR, and PDGFRA loci and by mutations in the NF1 locus, which each favor a defined state. Our work provides a blueprint for glioblastoma, integrating the malignant cell programs, their plasticity, and their modulation by genetic drivers.
Asunto(s)
Neoplasias Encefálicas/genética , Plasticidad de la Célula/genética , Glioblastoma/genética , Adolescente , Anciano , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Linaje de la Célula/genética , Niño , Estudios de Cohortes , Modelos Animales de Enfermedad , Femenino , Heterogeneidad Genética , Glioblastoma/patología , Xenoinjertos , Humanos , Lactante , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Persona de Mediana Edad , Mutación , RNA-Seq , Análisis de la Célula Individual/métodos , Microambiente Tumoral/genéticaRESUMEN
Although human tumours are shaped by the genetic evolution of cancer cells, evidence also suggests that they display hierarchies related to developmental pathways and epigenetic programs in which cancer stem cells (CSCs) can drive tumour growth and give rise to differentiated progeny. Yet, unbiased evidence for CSCs in solid human malignancies remains elusive. Here we profile 4,347 single cells from six IDH1 or IDH2 mutant human oligodendrogliomas by RNA sequencing (RNA-seq) and reconstruct their developmental programs from genome-wide expression signatures. We infer that most cancer cells are differentiated along two specialized glial programs, whereas a rare subpopulation of cells is undifferentiated and associated with a neural stem cell expression program. Cells with expression signatures for proliferation are highly enriched in this rare subpopulation, consistent with a model in which CSCs are primarily responsible for fuelling the growth of oligodendroglioma in humans. Analysis of copy number variation (CNV) shows that distinct CNV sub-clones within tumours display similar cellular hierarchies, suggesting that the architecture of oligodendroglioma is primarily dictated by developmental programs. Subclonal point mutation analysis supports a similar model, although a full phylogenetic tree would be required to definitively determine the effect of genetic evolution on the inferred hierarchies. Our single-cell analyses provide insight into the cellular architecture of oligodendrogliomas at single-cell resolution and support the cancer stem cell model, with substantial implications for disease management.
Asunto(s)
Células Madre Neoplásicas/patología , Oligodendroglioma/genética , Oligodendroglioma/patología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Diferenciación Celular , Proliferación Celular , Variaciones en el Número de Copia de ADN/genética , Humanos , Isocitrato Deshidrogenasa/genética , Células Madre Neoplásicas/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Neuroglía/metabolismo , Neuroglía/patología , Filogenia , Mutación PuntualRESUMEN
OBJECTIVE: Noncigarette tobacco products are increasingly popular. Researchers need to understand multiple tobacco product use to assess the effects of these products on population health. We estimate national prevalence and examine risk factors for multiple product use. METHOD: We calculated prevalence estimates of current use patterns involving cigarettes, cigars, electronic cigarettes, hookah, smokeless tobacco, and snus using data from the 2012 RTI National Adult Tobacco Survey (N=3627), a random-digit-dial telephone survey of adults aged 18 and over. Associations between use patterns (exclusive single product and multiple products) and demographic characteristics were examined using Pearson chi-square tests and logistic regression. RESULTS: 32.1% of adults currently use 1 or more tobacco products; 14.9% use cigarettes exclusively, and 6.6% use one noncigarette product exclusively, 6.9% use cigarettes with another product (dual use), 1.3% use two noncigarette products, and 2.4% use three or more products (polytobacco use). Smokers who are young adult, male, never married, reside in the West, and made prior quit attempts were at risk for multiple product use. CONCLUSIONS: Over 10% of U.S. adults use multiple tobacco products. A better understanding of multiple product use involving combustible products, like cigars and hookah, is needed. Multiple product use may be associated with past quit attempts.
Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina/estadística & datos numéricos , Fumar/epidemiología , Productos de Tabaco/estadística & datos numéricos , Tabaco sin Humo/estadística & datos numéricos , Adolescente , Adulto , Anciano , Distribución de Chi-Cuadrado , Sistemas Electrónicos de Liberación de Nicotina/psicología , Femenino , Encuestas Epidemiológicas , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Prevalencia , Factores de Riesgo , Fumar/psicología , Factores Socioeconómicos , Encuestas y Cuestionarios , Cese del Uso de Tabaco/métodos , Cese del Uso de Tabaco/psicología , Cese del Uso de Tabaco/estadística & datos numéricos , Estados Unidos/epidemiología , Adulto JovenRESUMEN
Melanoma-derived brain metastases (MBM) represent an unmet clinical need because central nervous system progression is frequently an end stage of the disease. Immune checkpoint inhibitors (ICI) provide a clinical opportunity against MBM; however, the MBM tumor microenvironment (TME) has not been fully elucidated in the context of ICI. To dissect unique elements of the MBM TME and correlates of MBM response to ICI, we collected 32 fresh MBM and performed single-cell RNA sequencing of the MBM TME and T-cell receptor clonotyping on T cells from MBM and matched blood and extracranial lesions. We observed myeloid phenotypic heterogeneity in the MBM TME, most notably multiple distinct neutrophil states, including an IL8-expressing population that correlated with malignant cell epithelial-to-mesenchymal transition. In addition, we observed significant relationships between intracranial T-cell phenotypes and the distribution of T-cell clonotypes intracranially and peripherally. We found that the phenotype, clonotype, and overall number of MBM-infiltrating T cells were associated with response to ICI, suggesting that ICI-responsive MBMs interact with peripheral blood in a manner similar to extracranial lesions. These data identify unique features of the MBM TME that may represent potential targets to improve clinical outcomes for patients with MBM.
Asunto(s)
Neoplasias Encefálicas , Melanoma , Humanos , Inhibidores de Puntos de Control Inmunológico , Microambiente TumoralRESUMEN
Gliomas with histone H3 lysine27-to-methionine mutations (H3K27M-glioma) arise primarily in the midline of the central nervous system of young children, suggesting a cooperation between genetics and cellular context in tumorigenesis. Although the genetics of H3K27M-glioma are well characterized, their cellular architecture remains uncharted. We performed single-cell RNA sequencing in 3321 cells from six primary H3K27M-glioma and matched models. We found that H3K27M-glioma primarily contain cells that resemble oligodendrocyte precursor cells (OPC-like), whereas more differentiated malignant cells are a minority. OPC-like cells exhibit greater proliferation and tumor-propagating potential than their more differentiated counterparts and are at least in part sustained by PDGFRA signaling. Our study characterizes oncogenic and developmental programs in H3K27M-glioma at single-cell resolution and across genetic subclones, suggesting potential therapeutic targets in this disease.
Asunto(s)
Neoplasias Encefálicas/patología , Carcinogénesis/genética , Glioma/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Oncogenes , Neoplasias Encefálicas/genética , Proliferación Celular , Glioma/genética , Histonas/metabolismo , Humanos , Proteína Quinasa 7 Activada por Mitógenos/genética , Mutación , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodosRESUMEN
Recent advances in single-cell, transcriptomic profiling have provided unprecedented access to investigate cell heterogeneity during tissue and organ development. In this study, we used massively parallel, single-cell RNA sequencing to define cell heterogeneity within the zebrafish kidney marrow, constructing a comprehensive molecular atlas of definitive hematopoiesis and functionally distinct renal cells found in adult zebrafish. Because our method analyzed blood and kidney cells in an unbiased manner, our approach was useful in characterizing immune-cell deficiencies within DNA-protein kinase catalytic subunit (prkdc), interleukin-2 receptor γ a (il2rga), and double-homozygous-mutant fish, identifying blood cell losses in T, B, and natural killer cells within specific genetic mutants. Our analysis also uncovered novel cell types, including two classes of natural killer immune cells, classically defined and erythroid-primed hematopoietic stem and progenitor cells, mucin-secreting kidney cells, and kidney stem/progenitor cells. In total, our work provides the first, comprehensive, single-cell, transcriptomic analysis of kidney and marrow cells in the adult zebrafish.
Asunto(s)
Hematopoyesis Extramedular/genética , Riñón/citología , ARN/genética , Pez Cebra/anatomía & histología , Animales , Animales Modificados Genéticamente , Linaje de la Célula/genética , Linaje de la Célula/fisiología , Perfilación de la Expresión Génica , Hematopoyesis Extramedular/fisiología , Células Madre Hematopoyéticas , Riñón/metabolismo , Análisis de Secuencia de ARN , Pez Cebra/genética , Pez Cebra/metabolismoRESUMEN
Glioblastoma, the most common and aggressive malignant brain tumor, is propagated by stem-like cancer cells refractory to existing therapies. Understanding the molecular mechanisms that control glioblastoma stem cell (GSC) proliferation and drug resistance may reveal opportunities for therapeutic interventions. Here we show that GSCs can reversibly transition to a slow-cycling, persistent state in response to targeted kinase inhibitors. In this state, GSCs upregulate primitive developmental programs and are dependent upon Notch signaling. This transition is accompanied by widespread redistribution of repressive histone methylation. Accordingly, persister GSCs upregulate, and are dependent on, the histone demethylases KDM6A/B. Slow-cycling cells with high Notch activity and histone demethylase expression are present in primary glioblastomas before treatment, potentially contributing to relapse. Our findings illustrate how cancer cells may hijack aspects of native developmental programs for deranged proliferation, adaptation, and tolerance. They also suggest strategies for eliminating refractory tumor cells by targeting epigenetic and developmental pathways.
Asunto(s)
Ensamble y Desensamble de Cromatina , Resistencia a Antineoplásicos , Glioblastoma/patología , Células Madre Neoplásicas/patología , Acetilación/efectos de los fármacos , Secuencia de Bases , Biomarcadores de Tumor/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Elementos de Facilitación Genéticos/genética , Glioblastoma/metabolismo , Histona Demetilasas/metabolismo , Histonas/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Lisina/metabolismo , Metilación/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Proteínas Nucleares/metabolismo , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Receptores Notch/metabolismo , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacosRESUMEN
Tumor subclasses differ according to the genotypes and phenotypes of malignant cells as well as the composition of the tumor microenvironment (TME). We dissected these influences in isocitrate dehydrogenase (IDH)-mutant gliomas by combining 14,226 single-cell RNA sequencing (RNA-seq) profiles from 16 patient samples with bulk RNA-seq profiles from 165 patient samples. Differences in bulk profiles between IDH-mutant astrocytoma and oligodendroglioma can be primarily explained by distinct TME and signature genetic events, whereas both tumor types share similar developmental hierarchies and lineages of glial differentiation. As tumor grade increases, we find enhanced proliferation of malignant cells, larger pools of undifferentiated glioma cells, and an increase in macrophage over microglia expression programs in TME. Our work provides a unifying model for IDH-mutant gliomas and a general framework for dissecting the differences among human tumor subclasses.
Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioma/genética , Glioma/patología , Isocitrato Deshidrogenasa/genética , Microambiente Tumoral , Neoplasias Encefálicas/clasificación , Linaje de la Célula , Glioma/clasificación , Humanos , Macrófagos , Microglía/metabolismo , Microglía/patología , Clasificación del Tumor , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Análisis de Componente Principal , Análisis de Secuencia de ARN , Análisis de la Célula IndividualRESUMEN
BACKGROUND: Noncigarette tobacco products are increasingly popular among youth, especially cigarette smokers. Understanding multiple tobacco product use is necessary to assess the effects of tobacco products on population health. This study examines multiple tobacco product use and associated risk factors among US youth. METHODS: Estimates of current use were calculated for cigarettes, cigars, smokeless tobacco, hookah, e-cigarettes, pipes, bidis, kreteks, snus, and dissolvable tobacco by using data from the 2012 National Youth Tobacco Survey (n = 24 658), a nationally representative sample of US middle and high school students. Associations between use patterns and demographic characteristics were examined by using multinomial logistic regression. RESULTS: Among youth, 14.7% currently use 1 or more tobacco products. Of these, 2.8% use cigarettes exclusively, and 4% use 1 noncigarette product exclusively; 2.7% use cigarettes with another product (dual use), and 4.3% use 3 or more products (polytobacco use). Twice as many youth use e-cigarettes alone than dual use with cigarettes. Among smokers, polytobacco use was significantly associated with male gender (adjusted relative risk ratio [aRRR] = 3.71), by using flavored products (aRRR = 6.09), nicotine dependence (aRRR = 1.91), tobacco marketing receptivity (aRRR = 2.52), and perceived prevalence of peer use of tobacco products (aRRR = 3.61, 5.73). CONCLUSIONS: More than twice as many youth in the United States currently use 2 or more tobacco products than cigarettes alone. Continued monitoring of tobacco use patterns is warranted, especially for e-cigarettes. Youth rates of multiple product use involving combustible products underscore needs for research assessing potential harms associated with these patterns.
Asunto(s)
Fumar/epidemiología , Estudiantes/estadística & datos numéricos , Productos de Tabaco/estadística & datos numéricos , Tabaquismo/epidemiología , Uso de Tabaco/epidemiología , Adolescente , Niño , Femenino , Humanos , Masculino , Oportunidad Relativa , Prevalencia , Estudios Retrospectivos , Factores de Riesgo , Estados Unidos/epidemiologíaRESUMEN
BACKGROUND: Nearly 35% of men treated for prostate cancer (PrCA) will experience biochemically defined recurrence, noted by a rise in PSA, within 10 years of definitive therapy. Diet, physical activity, and stress reduction may affect tumor promotion and disease progression. METHODS: A randomized trial of an intensive diet, physical activity, and meditation intervention was conducted in men with rising post-treatment PSA after definitive treatment for PrCA. Intention-to-treat methods were used to compare usual care to the intervention in 47 men with complete data. Signal detection methods were used to identify dietary factors associated with PSA change. RESULTS: The intervention and control groups did not differ statistically on any demographic or disease-related factor. Although the intervention group experienced decreases of 39% in intakes of saturated fatty acid (SFA as percent of total calories) (p<0.0001) and 12% in total energy intake (218 kcal/day, p<0.05)], no difference in PSA change was observed by intervention status. Signal detection methods indicated that in men increasing their consumption of fruit, 56% experienced no rise in PSA (vs. 29% in men who did not increase their fruit intake). Among men who increased fruit and fiber intakes, PSA increased in 83% of participants who also increased saturated fatty acid intake (vs. 44% in participants who decreased or maintained saturated fatty acid intake). CONCLUSION: Results are discussed in the context of conventional treatment strategies that were more aggressive when this study was being conducted in the mid-2000s. Positive health changes in a number of lifestyle parameters were observed with the intervention, and both increased fruit and reduced saturated fat intakes were associated with maintaining PSA levels in men with biochemically recurrent disease.