Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
New Phytol ; 229(2): 861-876, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32910470

RESUMEN

Sphagnum farming can substitute peat with renewable biomass and thus help mitigate climate change. Large volumes of the required founder material can only be supplied sustainably by axenic cultivation in bioreactors. We established axenic in vitro cultures from sporophytes of 19 Sphagnum species collected in Austria, Germany, Latvia, the Netherlands, Russia, and Sweden: S. angustifolium, S. balticum, S. capillifolium, S. centrale, S. compactum, S. cuspidatum, S. fallax, S. fimbriatum, S. fuscum, S. lindbergii, S. medium/divinum, S. palustre, S. papillosum, S. rubellum, S. russowii, S. squarrosum, S. subnitens, S. subfulvum and S. warnstorfii. These species cover five of the six European Sphagnum subgenera; namely, Acutifolia, Cuspidata, Rigida, Sphagnum and Squarrosa. Their growth was measured in suspension cultures, whereas their ploidy was determined by flow cytometry and compared with the genome size of Physcomitrella patens. We identified haploid and diploid Sphagnum species, found that their cells are predominantly arrested in the G1 phase of the cell cycle, and did not find a correlation between plant productivity and ploidy. DNA barcoding was achieved by sequencing introns of the BRK1 genes. With this collection, high-quality founder material for diverse large-scale applications, but also for basic Sphagnum research, is available from the International Moss Stock Center.


Asunto(s)
Sphagnopsida , Austria , Biología , Biotecnología , Alemania , Federación de Rusia , Suecia
2.
PLoS Genet ; 8(8): e1002920, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22956915

RESUMEN

Spinocerebellar Ataxia Type 2 (SCA2) is caused by expansion of a polyglutamine encoding triplet repeat in the human ATXN2 gene beyond (CAG)(31). This is thought to mediate toxic gain-of-function by protein aggregation and to affect RNA processing, resulting in degenerative processes affecting preferentially cerebellar neurons. As a faithful animal model, we generated a knock-in mouse replacing the single CAG of murine Atxn2 with CAG42, a frequent patient genotype. This expansion size was inherited stably. The mice showed phenotypes with reduced weight and later motor incoordination. Although brain Atxn2 mRNA became elevated, soluble ATXN2 protein levels diminished over time, which might explain partial loss-of-function effects. Deficits in soluble ATXN2 protein correlated with the appearance of insoluble ATXN2, a progressive feature in cerebellum possibly reflecting toxic gains-of-function. Since in vitro ATXN2 overexpression was known to reduce levels of its protein interactor PABPC1, we studied expansion effects on PABPC1. In cortex, PABPC1 transcript and soluble and insoluble protein levels were increased. In the more vulnerable cerebellum, the progressive insolubility of PABPC1 was accompanied by decreased soluble protein levels, with PABPC1 mRNA showing no compensatory increase. The sequestration of PABPC1 into insolubility by ATXN2 function gains was validated in human cell culture. To understand consequences on mRNA processing, transcriptome profiles at medium and old age in three different tissues were studied and demonstrated a selective induction of Fbxw8 in the old cerebellum. Fbxw8 is encoded next to the Atxn2 locus and was shown in vitro to decrease the level of expanded insoluble ATXN2 protein. In conclusion, our data support the concept that expanded ATXN2 undergoes progressive insolubility and affects PABPC1 by a toxic gain-of-function mechanism with tissue-specific effects, which may be partially alleviated by the induction of FBXW8.


Asunto(s)
Cerebelo , Proteínas F-Box , Proteínas del Tejido Nervioso , Proteína I de Unión a Poli(A) , Animales , Ataxinas , Cerebelo/metabolismo , Cerebelo/patología , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Técnicas de Sustitución del Gen , Células HeLa , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Neuronas/metabolismo , Neuronas/patología , Péptidos/genética , Proteína I de Unión a Poli(A)/genética , Proteína I de Unión a Poli(A)/metabolismo , Solubilidad
3.
Neurogenetics ; 15(2): 135-44, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24659297

RESUMEN

During cell stress, the transcription and translation of immediate early genes are prioritized, while most other messenger RNAs (mRNAs) are stored away in stress granules or degraded in processing bodies (P-bodies). TIA-1 is an mRNA-binding protein that needs to translocate from the nucleus to seed the formation of stress granules in the cytoplasm. Because other stress granule components such as TDP-43, FUS, ATXN2,SMN, MAPT, HNRNPA2B1, and HNRNPA1 are crucial for the motor neuron diseases amyotrophic lateral sclerosis (ALS)/spinal muscular atrophy (SMA) and for the frontotemporal dementia(FTD), here we studied mouse nervous tissue to identify mRNAs with selective dependence on Tia1 deletion. Transcriptome profiling with oligonucleotide microarrays in comparison of spinal cord and cerebellum, together with independent validation in quantitative reverse transcriptase PCR and immunoblots demonstrated several strong and consistent dysregulations. In agreement with previously reported TIA1 knock down effects, cell cycle and apoptosis regulators were affected markedly with expression changes up to +2-fold, exhibiting increased levels for Cdkn1a, Ccnf, and Tprkb vs.decreased levels for Bid and Inca1 transcripts. Novel and surprisingly strong expression alterations were detected for fat storage and membrane trafficking factors, with prominent +3-fold upregulations of Plin4, Wdfy1, Tbc1d24, and Pnpla2 vs. a −2.4-fold downregulation of Cntn4 transcript, encoding an axonal membrane adhesion factor with established haploinsufficiency.In comparison, subtle effects on the RNA processing machinery included up to 1.2-fold upregulations of Dcp1b and Tial1. The effect on lipid dynamics factors is noteworthy, since also the gene deletion of Tardbp (encoding TDP-43) and Atxn2 led to fat metabolism phenotypes in mouse. In conclusion, genetic ablation of the stress granule nucleator TIA-1 has a novel major effect on mRNAs encoding lipid homeostasis factors in the brain, similar to the fasting effect.


Asunto(s)
Encéfalo/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Médula Espinal/metabolismo , Estrés Fisiológico/genética , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Contactinas/metabolismo , Gránulos Citoplasmáticos/metabolismo , Perfilación de la Expresión Génica , Homeostasis , Metabolismo de los Lípidos/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Perilipina-4 , Antígeno Intracelular 1 de las Células T
4.
Eur J Cancer ; 152: 41-48, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34062486

RESUMEN

BACKGROUND: Immune checkpoint inhibitors (ICIs) are widely used and may induce long-term survival in various types of cancer. Yet, there is scarce evidence on potential effects on patient fertility and the necessity of cryopreservation before treatment onset. The aim of our study was to assess the prevalence of male infertility after initiation of ICI treatment. METHODS: This is a monocenter, cross-sectional pilot study. Fertility was investigated by spermiogram, analysis of sexual hormones and questionnaires on sexual function and sexual activity. Male patients under the age of 60 years previously or currently treated with ICI for cutaneous malignancies or uveal melanoma were included. RESULTS: Twenty-five patients were included, with a median age of 49 years. Eighteen of 22 (82%) available spermiograms showed no pathologies, all patients reported a normal sexual function and sexual activity. Of four patients with pathological spermiogram, three patients were diagnosed with azoospermia and one with oligoasthenoteratozoospermia. Three patients had significant confounding factors (previous inguinal radiotherapy, chemotherapy and chronic alcohol abuse, and bacterial orchitis). One patient with normal spermiogram before ICI treatment presented 1 year after initiation with azoospermia, showing an asymptomatic, inflammatory infiltrate with predominantly neutrophil granulocytes, macrophages and T-lymphocytes in the ejaculate. Infectious causes were ruled out; andrological examination was unremarkable. A second case with reduced sperm counts during treatment may be ICI-induced also. CONCLUSIONS: Most patients had no restrictions in fertility, yet an inflammatory loss of spermatogenesis seems possible. Cryopreservation should be discussed with all patients with potential future desire for children before treatment.


Asunto(s)
Azoospermia/diagnóstico , Fertilidad/efectos de los fármacos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Melanoma/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias de la Úvea/tratamiento farmacológico , Adulto , Azoospermia/inducido químicamente , Azoospermia/inmunología , Estudios Transversales , Criopreservación , Fertilidad/inmunología , Preservación de la Fertilidad , Humanos , Masculino , Melanoma/inmunología , Persona de Mediana Edad , Proyectos Piloto , Derivación y Consulta , Análisis de Semen , Neoplasias Cutáneas/inmunología , Espermatogénesis/efectos de los fármacos , Espermatogénesis/inmunología , Neoplasias de la Úvea/inmunología
5.
World J Diabetes ; 5(3): 316-27, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24936253

RESUMEN

Genetic linkage analyses, genome-wide association studies of single nucleotide polymorphisms, copy number variation surveys, and mutation screenings found the human chromosomal 12q24 locus, with the genes SH2B3 and ATXN2 in its core, to be associated with an exceptionally wide spectrum of disease susceptibilities. Hematopoietic traits of red and white blood cells (like erythrocytosis and myeloproliferative disease), autoimmune disorders (like type 1 diabetes, coeliac disease, juvenile idiopathic arthritis, rheumatoid arthritis, thrombotic antiphospholipid syndrome, lupus erythematosus, multiple sclerosis, hypothyroidism and vitiligo), also vascular pathology (like kidney glomerular filtration rate deficits, serum urate levels, plasma beta-2-microglobulin levels, retinal microcirculation problems, diastolic and systolic blood pressure and hypertension, cardiovascular infarction), furthermore obesity, neurodegenerative conditions (like the polyglutamine-expansion disorder spinocerebellar ataxia type 2, Parkinson's disease, the motor-neuron disease amyotrophic lateral sclerosis, and progressive supranuclear palsy), and finally longevity were reported. Now it is important to clarify, in which ways the loss or gain of function of the locally encoded proteins SH2B3/LNK and ataxin-2, respectively, contribute to these polygenic health problems. SH2B3/LNK is known to repress the JAK2/ABL1 dependent proliferation of white blood cells. Its null mutations in human and mouse are triggers of autoimmune traits and leukemia (acute lymphoblastic leukemia or chronic myeloid leukemia-like), while missense mutations were found in erythrocytosis-1 patients. Ataxin-2 is known to act on RNA-processing and trophic receptor internalization. While its polyglutamine-expansion mediated gain-of-function causes neuronal atrophy in human and mouse, its deletion leads to obesity and insulin resistance in mice. Thus, it is conceivable that the polygenic pathogenesis of type 1 diabetes is enhanced by an SH2B3-dysregulation-mediated predisposition to autoimmune diseases that conspires with an ATXN2-deficiency-mediated predisposition to lipid and glucose metabolism pathology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA