Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Eur Radiol ; 31(1): 486-493, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32725337

RESUMEN

OBJECTIVES: To evaluate the long-term prognostic value of coronary CT angiography (cCTA)-derived plaque measures and clinical parameters on major adverse cardiac events (MACE) using machine learning (ML). METHODS: Datasets of 361 patients (61.9 ± 10.3 years, 65% male) with suspected coronary artery disease (CAD) who underwent cCTA were retrospectively analyzed. MACE was recorded. cCTA-derived adverse plaque features and conventional CT risk scores together with cardiovascular risk factors were provided to a ML model to predict MACE. A boosted ensemble algorithm (RUSBoost) utilizing decision trees as weak learners with repeated nested cross-validation to train and validate the model was used. Performance of the ML model was calculated using the area under the curve (AUC). RESULTS: MACE was observed in 31 patients (8.6%) after a median follow-up of 5.4 years. Discriminatory power was significantly higher for the ML model (AUC 0.96 [95%CI 0.93-0.98]) compared with conventional CT risk scores including Agatston calcium score (AUC 0.84 [95%CI 0.80-0.87]), segment involvement score (AUC 0.88 [95%CI 0.84-0.91]), and segment stenosis score (AUC 0.89 [95%CI 0.86-0.92], all p < 0.05). Similar results were shown for adverse plaque measures (AUCs 0.72-0.82, all p < 0.05) and clinical parameters including the Framingham risk score (AUCs 0.71-0.76, all p < 0.05). The ML model yielded significantly higher diagnostic performance compared with logistic regression analysis (AUC 0.96 vs. 0.92, p = 0.024). CONCLUSION: Integration of a ML model improves the long-term prediction of MACE when compared with conventional CT risk scores, adverse plaque measures, and clinical information. ML algorithms may improve the integration of patient's information to enhance risk stratification. KEY POINTS: • A machine learning (ML) model portends high discriminatory power to predict major adverse cardiac events (MACE). • ML-based risk stratification shows superior diagnostic performance for MACE prediction over coronary CT angiography (cCTA)-derived risk scores or clinical parameters alone. • A ML model outperforms conventional logistic regression analysis for the prediction of MACE.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Placa Aterosclerótica , Angiografía por Tomografía Computarizada , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Estenosis Coronaria/diagnóstico por imagen , Femenino , Humanos , Aprendizaje Automático , Masculino , Placa Aterosclerótica/diagnóstico por imagen , Valor Predictivo de las Pruebas , Pronóstico , Estudios Retrospectivos , Medición de Riesgo , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA