Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomacromolecules ; 25(7): 4046-4062, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38913613

RESUMEN

Ethylcellulose (EC) is a crucial cellulose derivative with widespread applications, particularly in the pharmaceutical industry, where precise property adjustments through chemical modification are imperative. The degree of substitution (DS) and the localization of substituents along the cellulose chains are pivotal factors in this process. However, the impact of the substituent location within the repeating unit of EC remains unexplored. To address this gap, we conducted molecular dynamics simulations on amorphous EC, comparing randomly and uniformly substituted ethyl groups in the repeating units. This comprehensive study of pairwise interactions revealed significant differences in intramolecular and intermolecular hydrogen-bonding capabilities, depending on whether the hydroxyl groups were substituted at C2, C3, or C6. While our simulations demonstrated that substituent localization in the repeating unit influenced the density, number of hydrogen bonds, and conformations, the DS emerged as the dominant determinant. This insight led us to propose and validate a hypothesis: a straightforward linear function using the properties of uniform models and molar fractions can predict the properties of randomly substituted EC with a given DS. This innovative approach is anticipated to contribute to the selection of cellulose derivatives with desirable properties for the pharmaceutical industry and new applications in other fields.


Asunto(s)
Celulosa , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Celulosa/química , Celulosa/análogos & derivados
2.
Commun Chem ; 7(1): 75, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570707

RESUMEN

To broaden the range in structures and properties, and therefore the applicability of sustainable foams based on wheat gluten expanded with ammonium-bicarbonate, we show here how three naturally ocurring multifunctional additives affect their properties. Citric acid yields foams with the lowest density (porosity of ~50%) with mainly closed cells. Gallic acid acts as a radical scavenger, yielding the least crosslinked/ aggregated foam. The use of a low amount of this acid yields foams with the highest uptake of the body-fluid model substance (saline, ~130% after 24 hours). However, foams with genipin show a large and rapid capillary uptake (50% in one second), due to their high content of open cells. The most dense and stiff foam is obtained with one weight percent genipin, which is also the most crosslinked. Overall, the foams show a high energy loss-rate under cyclic compression (84-92% at 50% strain), indicating promising cushioning behaviour. They also show a low compression set, indicating promising sealability. Overall, the work here provides a step towards using protein biofoams as a sustainable alternative to fossil-based plastic/rubber foams in applications where absorbent and/or mechanical properties play a key role.

3.
Carbohydr Polym ; 328: 121723, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220326

RESUMEN

The inherent colloidal dispersity (due to length, aspect ratio, surface charge heterogeneity) of CNCs, when produced using the typical traditional sulfuric acid hydrolysis route, presents a great challenge when interpreting colloidal properties and linking the CNC film nanostructure to the helicoidal self-assembly mechanism during drying. Indeed, further improvement of this CNC preparation route is required to yield films with better control over the CNC pitch and optical properties. Here we present a modified CNC-preparation protocol, by fractionating and harvesting CNCs with different average surface charges, rod lengths, aspect ratios, already during the centrifugation steps after hydrolysis. This enables faster CNC fractionation, because it is performed in a high ionic strength aqueous medium. By comparing dry films from the three CNC fractions, discrepancies in the CNC self-assembly and structural colors were clearly observed. Conclusively, we demonstrate a fast protocol to harvest different populations of CNCs, that enable tailored refinement of structural colors in CNC films.

4.
ACS Omega ; 9(1): 1341-1351, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222641

RESUMEN

Biocomposites based on wheat gluten and reinforced with carbon fibers were produced in line with the strive to replace fossil-based plastics with microplastic-free alternatives with competing mechanical properties. The materials were first extruded/compounded and then successfully injection molded, making the setup adequate for the current industrial processing of composite plastics. Furthermore, the materials were manufactured at very low extrusion and injection temperatures (70 and 140 °C, respectively), saving energy compared to the compounding of commodity plastics. The sole addition of 10 vol % fibers increased yield strength and stiffness by a factor of 2-4 with good adhesion to the protein. The biocomposites were also shown to be biodegradable, lixiviating into innocuous molecules for nature, which is the next step in the development of sustainable bioplastics. The results show that an industrial protein coproduct reinforced with strong fibers can be processed using common plastic processing techniques. The enhanced mechanical performance of the reinforced protein-based matrix herein also contributes to research addressing the production of safe materials with properties matching those of traditional fossil-based plastics.

5.
Carbohydr Polym ; 331: 121846, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38388051

RESUMEN

To further our understanding of a thermoplastic arabinoxylan (AX) material obtained through an oxidation-reduction-etherification pathway, the role of the initial arabinose:xylose ratio on the material properties was investigated. Compression molded films with one molar substitution of butyl glycidyl ether (BGE) showed markedly different tensile behaviors. Films made from low arabinose AX were less ductile, while those made from high arabinose AX exhibited elastomer-like behaviors. X-ray scattering confirmed the presence of nanostructure formation resulting in nano-domains rich in either AX or BGE, from side chain grafting. The scattering data showed variations in the presence of ordered structures, nano-domain sizes and their temperature response between AX with different arabinose contents. In dynamic mechanical testing, three transitions were observed at approximately -90 °C, -50 °C and 80 °C, with a correlation between samples with more structured nano-domains and those with higher onset transition temperatures and lower storage modulus decrease. The mechanical properties of the final thermoplastic AX material can therefore be tuned by controlling the composition of the starting material.

6.
Adv Mater ; : e2401464, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38870339

RESUMEN

This review focuses on the use of polyolefins in high-voltage direct-current (HVDC) cables and capacitors. A short description of the latest evolution and current use of HVDC cables and capacitors is first provided, followed by the basics of electric insulation and capacitor functions. Methods to determine dielectric properties are described, including charge transport, space charges, resistivity, dielectric loss, and breakdown strength. The semicrystalline structure of polyethylene and isotactic polypropylene is described, and the way it relates to the dielectric properties is discussed. A significant part of the review is devoted to describing the state of art of the modeling and prediction of electric or dielectric properties of polyolefins with consideration of both atomistic and continuum approaches. Furthermore, the effects of the purity of the materials and the presence of nanoparticles are presented, and the review ends with the sustainability aspects of these materials. In summary, the effective use of modeling in combination with experimental work is described as an important route toward understanding and designing the next generations of materials for electrical insulation in high-voltage transmission.

7.
8.
Nat Commun ; 15(1): 2052, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448423
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA