Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Development ; 144(7): 1235-1241, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28351867

RESUMEN

Enhancers frequently contain multiple binding sites for the same transcription factor. These homotypic binding sites often exhibit synergy, whereby the transcriptional output from two or more binding sites is greater than the sum of the contributions of the individual binding sites alone. Although this phenomenon is frequently observed, the mechanistic basis for homotypic binding site synergy is poorly understood. Here, we identify a bona fide cardiac-specific Prkaa2 enhancer that is synergistically activated by homotypic MEF2 binding sites. We show that two MEF2 sites in the enhancer function cooperatively due to bridging of the MEF2C-bound sites by the SAP domain-containing co-activator protein myocardin, and we show that paired sites buffer the enhancer from integration site-dependent effects on transcription in vivo Paired MEF2 sites are prevalent in cardiac enhancers, suggesting that this might be a common mechanism underlying synergy in the control of cardiac gene expression in vivo.


Asunto(s)
Factores de Transcripción MEF2/metabolismo , Miocardio/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Transcripción Genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Elementos de Facilitación Genéticos , Ratones Transgénicos , Multimerización de Proteína
2.
Clin Cancer Res ; 29(16): 2988-3003, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37265425

RESUMEN

PURPOSE: Patients with unresectable/metastatic chondrosarcoma have poor prognoses; conventional chondrosarcoma is associated with a median progression-free survival (PFS) of <4 months after first-line chemotherapy. No standard targeted therapies are available. We present the preclinical characterization of INBRX-109, a third-generation death receptor 5 (DR5) agonist, and clinical findings from a phase I trial of INBRX-109 in unresectable/metastatic chondrosarcoma (NCT03715933). PATIENTS AND METHODS: INBRX-109 was first characterized preclinically as a DR5 agonist, with binding specificity and hepatotoxicity evaluated in vitro and antitumor activity evaluated both in vitro and in vivo. INBRX-109 (3 mg/kg every 3 weeks) was then evaluated in a phase I study of solid tumors, which included a cohort with any subtype of chondrosarcoma and a cohort with IDH1/IDH2-mutant conventional chondrosarcoma. The primary endpoint was safety. Efficacy was an exploratory endpoint, with measures including objective response, disease control rate, and PFS. RESULTS: In preclinical studies, INBRX-109 led to antitumor activity in vitro and in patient-derived xenograft models, with minimal hepatotoxicity. In the phase I study, INBRX-109 was well tolerated and demonstrated antitumor activity in unresectable/metastatic chondrosarcoma. INBRX-109 led to a disease control rate of 87.1% [27/31; durable clinical benefit, 40.7% (11/27)], including two partial responses, and median PFS of 7.6 months. Most treatment-related adverse events, including liver-related events, were low grade (grade ≥3 events in chondrosarcoma cohorts, 5.7%). CONCLUSIONS: INBRX-109 demonstrated encouraging antitumor activity with a favorable safety profile in patients with unresectable/metastatic chondrosarcoma. A randomized, placebo-controlled, phase II trial (ChonDRAgon, NCT04950075) will further evaluate INBRX-109 in conventional chondrosarcoma.


Asunto(s)
Neoplasias Óseas , Condrosarcoma , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF , Humanos , Anticuerpos Monoclonales/uso terapéutico , Neoplasias Óseas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas , Condrosarcoma/terapia , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/agonistas , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/inmunología
3.
Mol Cell Biol ; 27(16): 5910-20, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17562853

RESUMEN

The MyoD family of basic helix-loop-helix (bHLH) transcription factors has the remarkable ability to induce myogenesis in vitro and in vivo. This myogenic specificity has been mapped to two amino acids in the basic domain, an alanine and threonine, referred to as the myogenic code. These essential determinants of myogenic specificity are conserved in all MyoD family members from worms to humans, yet their function in myogenesis is unclear. Induction of the muscle transcriptional program requires that MyoD be able to locate and stably bind to sequences present in the promoter regions of critical muscle genes. Recent studies have shown that MyoD binds to noncanonical E boxes in the myogenin gene, a critical locus required for myogenesis, through interactions with resident heterodimers of the HOX-TALE transcription factors Pbx1A and Meis1. In the present study, we show that the myogenic code is required for MyoD to bind to noncanonical E boxes in the myogenin promoter and for the formation of a tetrameric complex with Pbx/Meis. We also show that these essential determinants of myogenesis are sufficient to confer noncanonical E box binding to the E12 basic domain. Thus, these data show that noncanonical E box binding correlates with myogenic potential, and we speculate that the myogenic code residues in MyoD function as myogenic determinants via their role in noncanonical E box binding and recognition.


Asunto(s)
Elementos E-Box/genética , Desarrollo de Músculos/genética , Proteína MioD/metabolismo , Animales , Secuencia de Bases , ADN/metabolismo , Dimerización , Proteínas de Homeodominio/metabolismo , Ratones , Datos de Secuencia Molecular , Mutación/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteína MioD/genética , Miogenina/genética , Proteínas de Neoplasias/metabolismo , Especificidad de Órganos , Regiones Promotoras Genéticas/genética , Unión Proteica , Estructura Terciaria de Proteína , Transcripción Genética , Activación Transcripcional/genética
4.
Mol Cell Biol ; 26(24): 9315-26, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17030629

RESUMEN

The sarcoplasmic reticulum (SR) plays a critical role in excitation-contraction coupling by regulating the cytoplasmic calcium concentration of striated muscle. The histidine-rich calcium-binding protein (HRCBP) is expressed in the junctional SR, the site of calcium release from the SR. HRCBP is expressed exclusively in muscle tissues and binds calcium with low affinity and high capacity. In addition, HRCBP interacts with triadin, a protein associated with the ryanodine receptor and thought to be involved in calcium release. Its calcium binding properties, localization to the SR, and interaction with triadin suggest that HRCBP is involved in calcium handling by the SR. To determine the function of HRCBP in vivo, we inactivated HRC, the gene encoding HRCBP, in mice. HRC knockout mice exhibited impaired weight gain beginning at 11 months of age, which was marked by reduced skeletal muscle and fat mass, and triadin protein expression was upregulated in the heart of HRC knockout mice. In addition, HRC null mice displayed a significantly exaggerated response to the induction of cardiac hypertrophy by isoproterenol compared to their wild-type littermates. The exaggerated response of HRC knockout mice to the induction of cardiac hypertrophy is consistent with a regulatory role for HRCBP in calcium handling in vivo and suggests that mutations in HRC, in combination with other genetic or environmental factors, might contribute to pathological hypertrophy and heart failure.


Asunto(s)
Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Predisposición Genética a la Enfermedad , Isoproterenol , Proteínas Musculares/deficiencia , Aumento de Peso/genética , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/fisiología , Cardiomegalia/inducido químicamente , Cardiomegalia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Musculares/genética , Proteínas Musculares/fisiología , Músculo Esquelético/metabolismo
5.
Mol Cell Biol ; 24(9): 3757-68, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15082771

RESUMEN

The HRC gene encodes the histidine-rich calcium-binding protein, which is found in the lumen of the junctional sarcoplasmic reticulum (SR) of cardiac and skeletal muscle and within calciosomes of arterial smooth muscle. The expression of HRC in cardiac, skeletal, and smooth muscle raises the possibility of a common transcriptional mechanism governing its expression in all three muscle cell types. In this study, we identified a transcriptional enhancer from the HRC gene that is sufficient to direct the expression of lacZ in the expression pattern of endogenous HRC in transgenic mice. The HRC enhancer contains a small, highly conserved sequence that is required for expression in all three muscle lineages. Within this conserved region is a consensus site for myocyte enhancer factor 2 (MEF2) proteins that we show is bound efficiently by MEF2 and is required for transgene expression in all three muscle lineages in vivo. Furthermore, the entire HRC enhancer sequence lacks any discernible CArG motifs, the binding site for serum response factor (SRF), and we show that the enhancer is not activated by SRF. Thus, these studies identify the HRC enhancer as the first MEF2-dependent, CArG-independent transcriptional target in smooth muscle and represent the first analysis of the transcriptional regulation of an SR gene in vivo.


Asunto(s)
Proteínas de Unión al Calcio/genética , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Músculo Esquelético/embriología , Músculo Liso Vascular/embriología , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos , Animales , Secuencia de Bases , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al ADN/genética , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Genes Reporteros , Corazón/fisiología , Humanos , Factores de Transcripción MEF2 , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Músculo Liso Vascular/fisiología , Factores Reguladores Miogénicos , Regiones Promotoras Genéticas , Alineación de Secuencia , Factores de Transcripción/genética , Transcripción Genética
6.
Skelet Muscle ; 5: 7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25789156

RESUMEN

BACKGROUND: Skeletal muscle is the most abundant tissue in the body and is a major source of total energy expenditure in mammals. Skeletal muscle consists of fast and slow fiber types, which differ in their energy usage, contractile speed, and force generation. Although skeletal muscle plays a major role in whole body metabolism, the transcription factors controlling metabolic function in muscle remain incompletely understood. Members of the myocyte enhancer factor 2 (MEF2) family of transcription factors play crucial roles in skeletal muscle development and function. MEF2C is expressed in skeletal muscle during development and postnatally and is known to play roles in sarcomeric gene expression, fiber type control, and regulation of metabolic genes. METHODS: We generated mice lacking Mef2c exclusively in skeletal muscle using a conditional knockout approach and conducted a detailed phenotypic analysis. RESULTS: Mice lacking Mef2c in skeletal muscle on an outbred background are viable and grow to adulthood, but they are significantly smaller in overall body size compared to control mice and have significantly fewer slow fibers. When exercised in a voluntary wheel running assay, Mef2c skeletal muscle knockout mice aberrantly accumulate glycogen in their muscle, suggesting an impairment in normal glucose homeostasis. Consistent with this notion, Mef2c skeletal muscle knockout mice exhibit accelerated blood glucose clearance compared to control mice. CONCLUSIONS: These findings demonstrate that MEF2C function in skeletal muscle is important for metabolic homeostasis and control of overall body size.

7.
Cancer Res ; 73(19): 6024-35, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23928993

RESUMEN

HER2/HER3 dimerization resulting from overexpression of HER2 or neuregulin (NRG1) in cancer leads to HER3-mediated oncogenic activation of phosphoinositide 3-kinase (PI3K) signaling. Although ligand-blocking HER3 antibodies inhibit NRG1-driven tumor growth, they are ineffective against HER2-driven tumor growth because HER2 activates HER3 in a ligand-independent manner. In this study, we describe a novel HER3 monoclonal antibody (LJM716) that can neutralize multiple modes of HER3 activation, making it a superior candidate for clinical translation as a therapeutic candidate. LJM716 was a potent inhibitor of HER3/AKT phosphorylation and proliferation in HER2-amplified and NRG1-expressing cancer cells, and it displayed single-agent efficacy in tumor xenograft models. Combining LJM716 with agents that target HER2 or EGFR produced synergistic antitumor activity in vitro and in vivo. In particular, combining LJM716 with trastuzumab produced a more potent inhibition of signaling and cell proliferation than trastuzumab/pertuzumab combinations with similar activity in vivo. To elucidate its mechanism of action, we solved the structure of LJM716 bound to HER3, finding that LJM716 bound to an epitope, within domains 2 and 4, that traps HER3 in an inactive conformation. Taken together, our findings establish that LJM716 possesses a novel mechanism of action that, in combination with HER2- or EGFR-targeted agents, may leverage their clinical efficacy in ErbB-driven cancers.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Neoplasias de la Mama/patología , Neurregulina-1/metabolismo , Conformación Proteica/efectos de los fármacos , Receptor ErbB-3/antagonistas & inhibidores , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Proliferación Celular/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Femenino , Humanos , Immunoblotting , Inmunoprecipitación , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Fosforilación/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/inmunología , Receptor ErbB-2/metabolismo , Receptor ErbB-3/química , Receptor ErbB-3/inmunología , Receptor ErbB-3/metabolismo , Transducción de Señal , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Genesis ; 42(1): 28-32, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15828002

RESUMEN

Genes expressed in skeletal muscle are often required in other tissues. This is particularly the case for cardiac and smooth muscle, both contractile tissues that share numerous characteristics with skeletal muscle, such that targeted inactivation can lead to embryonic lethality prior to a requirement for gene function in skeletal muscle. Thus, it is essential that conditional inactivation approaches are developed to disrupt genes specifically in skeletal muscle. In this report, we describe a transgenic mouse that expresses Cre recombinase under the control of a skeletal muscle-specific promoter from the mef2c gene. Cre expression in this transgenic line is completely restricted to skeletal muscle from early in development and is present in all skeletal muscles, including those of epaxial and hypaxial origins and in fast and slow fibers. This early skeletal muscle-specific Cre line will be a useful tool to define the function of genes specifically in skeletal muscle.


Asunto(s)
Integrasas/biosíntesis , Integrasas/genética , Ratones Transgénicos/genética , Músculo Esquelético/fisiología , Factores Reguladores Miogénicos/fisiología , Animales , Técnicas de Cultivo de Célula , Factores de Transcripción MEF2 , Ratones , Regiones Promotoras Genéticas
9.
Development ; 132(15): 3405-17, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15987774

RESUMEN

The GATA family of zinc-finger transcription factors plays key roles in the specification and differentiation of multiple cell types during development. GATA4 is an early regulator of gene expression during the development of endoderm and mesoderm, and genetic studies in mice have demonstrated that GATA4 is required for embryonic development. Despite the importance of GATA4 in tissue specification and differentiation, the mechanisms by which Gata4 expression is activated and the transcription factor pathways upstream of GATA4 remain largely undefined. To identify transcriptional regulators of Gata4 in the mouse, we screened conserved noncoding sequences from the mouse Gata4 gene for enhancer activity in transgenic embryos. Here, we define the regulation of a distal enhancer element from Gata4 that is sufficient to direct expression throughout the lateral mesoderm, beginning at 7.5 days of mouse embryonic development. The activity of this enhancer is initially broad but eventually becomes restricted to the mesenchyme surrounding the liver. We demonstrate that the function of this enhancer in transgenic embryos is dependent upon highly conserved Forkhead and GATA transcription factor binding sites, which are bound by FOXF1 and GATA4, respectively. Furthermore, the activity of the Gata4 lateral mesoderm enhancer is attenuated by the BMP antagonist Noggin, and the enhancer is not activated in Bmp4-null embryos. Thus, these studies establish that Gata4 is a direct transcriptional target of Forkhead and GATA transcription factors in the lateral mesoderm, and demonstrate that Gata4 lateral mesoderm enhancer activation requires BMP4, supporting a model in which GATA4 serves as a downstream effector of BMP signaling in the lateral mesoderm.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Proteínas de Unión al ADN/genética , Desarrollo Embrionario/fisiología , Elementos de Facilitación Genéticos/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Proteína Morfogenética Ósea 4 , Cartilla de ADN , Desarrollo Embrionario/genética , Factores de Transcripción Forkhead , Factor de Transcripción GATA4 , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Mesodermo/citología , Mesodermo/fisiología , Ratones , Ratones Transgénicos , beta-Galactosidasa/genética
10.
Development ; 132(10): 2463-74, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15843409

RESUMEN

To elucidate the function of the T-box transcription factor Tbx20 in mammalian development, we generated a graded loss-of-function series by transgenic RNA interference in entirely embryonic stem cell-derived mouse embryos. Complete Tbx20 knockdown resulted in defects in heart formation, including hypoplasia of the outflow tract and right ventricle, which derive from the anterior heart field (AHF), and decreased expression of Nkx2-5 and Mef2c, transcription factors required for AHF formation. A mild knockdown led to persistent truncus arteriosus (unseptated outflow tract) and hypoplastic right ventricle, entities similar to human congenital heart defects, and demonstrated a critical requirement for Tbx20 in valve formation. Finally, an intermediate knockdown revealed a role for Tbx20 in motoneuron development, specifically in the regulation of the transcription factors Isl2 and Hb9, which are important for terminal differentiation of motoneurons. Tbx20 could activate promoters/enhancers of several genes in cultured cells, including the Mef2c AHF enhancer and the Nkx2-5 cardiac enhancer. The Mef2c AHF enhancer relies on Isl1- and Gata-binding sites. We identified a similar Isl1 binding site in the Nkx2-5 AHF enhancer, which in transgenic mouse embryos was essential for activity in a large part of the heart, including the outflow tract. Tbx20 synergized with Isl1 and Gata4 to activate both the Mef2c and Nkx2-5 enhancers, thus providing a unifying mechanism for gene activation by Tbx20 in the AHF. We conclude that Tbx20 is positioned at a critical node in transcription factor networks required for heart and motoneuron development where it dose-dependently regulates gene expression.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Ratones/embriología , Morfogénesis , Neuronas Motoras/fisiología , Proteínas de Dominio T Box/metabolismo , Animales , Diferenciación Celular/fisiología , Embrión de Mamíferos/embriología , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/metabolismo , Factores de Transcripción MEF2 , Ratones/genética , Factores Reguladores Miogénicos/metabolismo , Interferencia de ARN , Proteínas de Dominio T Box/genética , Factores de Transcripción/metabolismo , Activación Transcripcional
11.
Dev Biol ; 275(2): 424-34, 2004 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-15501228

RESUMEN

Members of the Myocyte Enhancer Factor 2 (MEF2) family of transcription factors play key roles in the development and differentiation of numerous cell types during mammalian development, including the vascular endothelium. Mef2c is expressed very early in the development of the endothelium, and genetic studies in mice have demonstrated that mef2c is required for vascular development. However, the transcriptional pathways involving MEF2C during endothelial cell development have not been defined. As a first step towards identifying the transcriptional factors upstream of MEF2C in the vascular endothelium, we screened for transcriptional enhancers from the mouse mef2c gene that regulate vascular expression in vivo. In this study, we identified a transcriptional enhancer from the mouse mef2c gene sufficient to direct expression to the vascular endothelium in transgenic embryos. This enhancer is active in endothelial cells within the developing vascular system from very early stages in vasculogenesis, and the enhancer remains robustly active in the vascular endothelium during embryogenesis and in adulthood. This mef2c endothelial cell enhancer contains four perfect consensus Ets transcription factor binding sites that are efficiently bound by Ets-1 protein in vitro and are required for enhancer function in transgenic embryos. Thus, these studies identify mef2c as a direct transcriptional target of Ets factors via an evolutionarily conserved transcriptional enhancer and establish a direct link between these two early regulators of vascular gene expression during endothelial cell development in vivo.


Asunto(s)
Endotelio Vascular/embriología , Elementos de Facilitación Genéticos/fisiología , Regulación del Desarrollo de la Expresión Génica , Factores Reguladores Miogénicos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional/fisiología , Animales , Secuencia de Bases , Evolución Biológica , Clonación Molecular , Cartilla de ADN , Ensayo de Cambio de Movilidad Electroforética , Elementos de Facilitación Genéticos/genética , Componentes del Gen , Inmunohistoquímica , Factores de Transcripción MEF2 , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Mutagénesis Insercional , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/fisiología , Plásmidos/genética , Proteína Proto-Oncogénica c-ets-1 , Proteínas Proto-Oncogénicas/fisiología , Proteínas Proto-Oncogénicas c-ets , Alineación de Secuencia , Análisis de Secuencia de ADN , Factores de Transcripción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA