RESUMEN
Recently, we have developed novel Pim-1 kinase inhibitors starting from a dihydrobenzofuran core structure using a computational approach. Here, we report the design and synthesis of stilbene-based Pim-1 kinase inhibitors obtained by formal elimination of the dihydrofuran ring. These inhibitors of the first design cycle, which were obtained as inseparable cis/trans mixtures, showed affinities in the low single-digit micromolar range. To be able to further optimize these compounds in a structure-based fashion, we determined the X-ray structures of the protein-ligand-complexes. Surprisingly, only the cis-isomer binds upon crystallization of the cis/trans-mixture of the ligands with Pim-1 kinase and the substrate PIMTIDE, the binding mode being largely consistent with that predicted by docking. After crystallization of the exclusively trans-configured derivatives, a markedly different binding mode for the inhibitor and a concomitant rearrangement of the glycine-rich loop is observed, resulting in the ligand being deeply buried in the binding pocket.
Asunto(s)
Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-pim-1 , Estilbenos , Humanos , Sitios de Unión , Cristalografía por Rayos X , Diseño de Fármacos , Ligandos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Estilbenos/química , Estilbenos/farmacología , Estilbenos/síntesis química , Relación Estructura-ActividadRESUMEN
Three new series of macrocyclic active site-directed inhibitors of the Zika virus (ZIKV) NS2B-NS3 protease were synthesized. First, attempts were made to replace the basic P3 lysine residue of our previously described inhibitors with uncharged and more hydrophobic residues. This provided numerous compounds with inhibition constants between 30 and 50 nM. A stronger reduction of the inhibitory potency was observed when the P2 lysine was replaced by neutral residues, all of these inhibitors possess Ki values >1 µM. However, it is possible to replace the P2 lysine with the less basic 3-aminomethylphenylalanine, which provides a similarly potent inhibitor of the ZIKV protease (Ki = 2.69 nM). Crystal structure investigations showed that the P2 benzylamine structure forms comparable interactions with the protease as lysine. Twelve additional structures of these inhibitors in complex with the protease were determined, which explain many, but not all, SAR data obtained in this study. All individual modifications in the P2 or P3 position resulted in inhibitors with low antiviral efficacy in cell culture. Therefore, a third inhibitor series with combined modifications was synthesized; all of them contain a more hydrophobic d-cyclohexylalanine in the linker segment. At a concentration of 40 µM, two of these compounds possess similar antiviral potency as ribavirin at 100 µM. Due to their reliable crystallization in complex with the ZIKV protease, these cyclic compounds are very well suited for a rational structure-based development of improved inhibitors.
Asunto(s)
Antivirales , Compuestos Macrocíclicos , Virus Zika , Virus Zika/enzimología , Virus Zika/efectos de los fármacos , Relación Estructura-Actividad , Compuestos Macrocíclicos/farmacología , Compuestos Macrocíclicos/síntesis química , Compuestos Macrocíclicos/química , Antivirales/farmacología , Antivirales/síntesis química , Antivirales/química , Estructura Molecular , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Relación Dosis-Respuesta a Droga , Serina Endopeptidasas/metabolismo , Humanos , Inhibidores de Proteasa Viral/farmacología , Inhibidores de Proteasa Viral/síntesis química , Inhibidores de Proteasa Viral/química , Cristalografía por Rayos X , Proteasas Virales , Nucleósido-Trifosfatasa , ARN Helicasas DEAD-boxRESUMEN
Medicinal-chemistry optimization follows strategies replacing functional groups and attaching larger substituents at a promising lead scaffold. Well-established bioisosterism rules are considered, however, it is difficult to estimate whether the introduced modifications really match the required properties at a binding site. The electron density distribution and pKa values are modulated influencing protonation states and bioavailability. Considering the adjacent H-bond donor/acceptor pattern of the hinge binding motif in a kinase, we studied by crystallography a set of fragments to map the required interaction pattern. Unexpectedly, benzoic acid and benzamidine, decorated with the correct substituents, are totally bioisosteric just as carboxamide and phenolic OH. A mono-dentate pyridine nitrogen out-performs bi-dentate functionalities. The importance of correctly designing pKa values of attached functional groups by additional substituents at the parent scaffold is rendered prominent.
RESUMEN
Mechanistic insights into protein-ligand interactions can yield chemical tools for modulating protein function and enable their use for therapeutic purposes. For the homodimeric enzyme tRNA-guanine transglycosylase (TGT), a putative virulence target of shigellosis, ligand binding has been shown by crystallography to transform the functional dimer geometry into an incompetent twisted one. However, crystallographic observation of both end states does neither verify the ligand-induced transformation of one dimer into the other in solution nor does it shed light on the underlying transformation mechanism. We addressed these questions in an approach that combines site-directed spin labeling (SDSL) with distance measurements based on pulsed electron-electron double resonance (PELDOR or DEER) spectroscopy. We observed an equilibrium between the functional and twisted dimer that depends on the type of ligand, with a pyranose-substituted ligand being the most potent one in shifting the equilibrium toward the twisted dimer. Our experiments suggest a dissociation-association mechanism for the formation of the twisted dimer upon ligand binding.
Asunto(s)
Proteínas Bacterianas/metabolismo , Pentosiltransferasa/metabolismo , Quinazolinonas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Simulación por Computador , Espectroscopía de Resonancia por Spin del Electrón , Ligandos , Mutación , Pentosiltransferasa/química , Pentosiltransferasa/genética , Unión Proteica , Multimerización de Proteína/efectos de los fármacos , Quinazolinonas/química , Zymomonas/enzimologíaRESUMEN
The bacterial enzyme tRNA-guanine transglycosylase (TGT) is involved in the biosynthesis of queuosine, a modified nucleoside present in the anticodon wobble position of tRNAHis, tRNATyr, tRNAAsp, and tRNAAsn. Although it forms a stable homodimer endowed with two active sites, it is, for steric reasons, able to bind and convert only one tRNA molecule at a time. In contrast, its mammalian counterpart constitutes a heterodimer consisting of a catalytic and a noncatalytic subunit, termed QTRT1 and QTRT2, respectively. Both subunits are homologous to the bacterial enzyme, yet only QTRT1 possesses all the residues required for substrate binding and catalysis. In mice, genetic inactivation of the TGT results in the uncontrolled oxidation of tetrahydrobiopterin and, accordingly, phenylketonuria-like symptoms. For this reason and because of the recent finding that mammalian TGT may be utilized for the treatment of multiple sclerosis, this enzyme is of potential medical relevance, rendering detailed knowledge of its biochemistry and structural architecture highly desirable. In this study, we performed the kinetic characterization of the murine enzyme, investigated potential quaternary structures of QTRT1 and QTRT2 via noncovalent mass spectrometry, and, finally, determined the crystal structure of the murine noncatalytic TGT subunit, QTRT2. In the crystal, QTRT2 is clearly present as a homodimer that is strikingly similar to that formed by bacterial TGT. In particular, a cluster of four aromatic residues within the interface of the bacterial TGT, which constitutes a "hot spot" for dimer stability, is present in a similar constellation in QTRT2.
Asunto(s)
Pentosiltransferasa/química , Multimerización de Proteína , Subunidades de Proteína/química , Animales , Cinética , Ratones , Estructura Cuaternaria de ProteínaRESUMEN
The intestinal disease shigellosis caused by Shigella bacteria affects over 120â million people annually. There is an urgent demand for new drugs as resistance against common antibiotics emerges. Bacterial tRNA-guanine transglycosylase (TGT) is a druggable target and controls the pathogenicity of Shigella flexneri. We report the synthesis of sugar-functionalized lin-benzoguanines addressing the ribose-33 pocket of TGT from Zymomonas mobilis. Ligand binding was analyzed by isothermal titration calorimetry and X-ray crystallography. Pocket occupancy was optimized by variation of size and protective groups of the sugars. The participation of a polycyclic water-cluster in the recognition of the sugar moiety was revealed. Acetonide-protected ribo- and psicofuranosyl derivatives are highly potent, benefiting from structural rigidity, good solubility, and metabolic stability. We conclude that sugar acetonides have a significant but not yet broadly recognized value in drug development.
Asunto(s)
Guanina/química , Pentosiltransferasa/química , ARN de Transferencia/química , Ribosa/química , Azúcares/química , Zymomonas/química , Cristalografía por Rayos X , Estructura Molecular , Pentosiltransferasa/metabolismo , Unión Proteica , SolventesRESUMEN
The enzyme tRNA-guanine transglycosylase, a target to fight Shigellosis, recognizes tRNA only as a homodimer and performs full nucleobase exchange at the wobble position. Active-site inhibitors block the enzyme function by competitively replacing tRNA. In solution, the wild-type homodimer dissociates only marginally, whereas mutated variants show substantial monomerization in solution. Surprisingly, one inhibitor transforms the protein into a twisted state, whereby one monomer unit rotates by approximately 130°. In this altered geometry, the enzyme is no longer capable of binding and processing tRNA. Three sugar-type inhibitors have been designed and synthesized, which bind to the protein in either the functionally competent or twisted inactive state. They crystallize with the enzyme side-by-side under identical conditions from the same crystallization well. Possibly, the twisted inactive form corresponds to a resting state of the enzyme, important for its functional regulation.
Asunto(s)
Pentosiltransferasa/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Modelos Moleculares , Estructura Molecular , Pentosiltransferasa/antagonistas & inhibidores , Pentosiltransferasa/químicaRESUMEN
We investigated the hydration state of the deep, well-accessible hydrophobic S1' specificity pocket of the metalloprotease thermolysin with purposefully designed ligands using high-resolution crystallography and isothermal titration calorimetry. The S1' pocket is known to recognize selectively a very stringent set of aliphatic side chains such as valine, leucine, and isoleucine of putative substrates. We engineered a weak-binding ligand covering the active site of the protease without addressing the S1' pocket, thus transforming it into an enclosed cavity. Its sustained accessibility could be proved by accommodating noble gas atoms into the pocket in the crystalline state. The topology and electron content of the enclosed pocket with a volume of 141 Å3 were analyzed using an experimental MAD-phased electron density map that was calibrated to an absolute electron number scale, enabling access to the total electron content within the cavity. Our analysis indicates that the S1' pocket is virtually vacated, thus free of any water molecules. The thermodynamic signature of the reduction of the void within the pocket by growing aliphatic P1' substituents (H, Me, iPr, iBu) reveals a dramatic, enthalpy-dominated gain in free energy of binding resulting in a factor of 41â¯000 in Kd for the H-to-iBu transformation. Substituents placing polar decoy groups into the pocket to capture putatively present water molecules could not collect any evidence for a bound solvent molecule.
Asunto(s)
Termolisina/química , Sitios de Unión , Calorimetría , Cristalografía por Rayos X , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Modelos Moleculares , Termodinámica , Termolisina/metabolismoRESUMEN
Hydrogen atoms play a key role in protein-ligand recognition. They determine the quality of established H-bonding networks and define the protonation of bound ligands. Structural visualization of Hâ atoms by X-ray crystallography is rarely possible. We used neutron diffraction to determine the positions of the hydrogen atoms in the ligands aniline and 2-aminopyridine bound to the archetypical serine protease trypsin. The resulting structures show the best resolution so far achieved for proteins larger than 100 residues and allow an accurate description of the protonation states and interactions with nearby water molecules. Despite its low pKa of 4.6 and a large distance of 3.6â Å to the charged Asp189 at the bottom of the S1â pocket, the amino group of aniline becomes protonated, whereas in 2-aminopyridine, the pyridine nitrogen picks up the proton although its amino group is 1.6â Å closer to Asp189. Therefore, apart from charge-charge distances, tautomer stability is decisive for the resulting binding poses, an aspect that is pivotal for predicting correct binding.
Asunto(s)
Aminopiridinas/química , Aminopiridinas/farmacología , Compuestos de Anilina/química , Compuestos de Anilina/farmacología , Protones , Tripsina/metabolismo , Descubrimiento de Drogas , Humanos , Enlace de Hidrógeno , Ligandos , Modelos Moleculares , Difracción de Neutrones , Tripsina/química , Inhibidores de Tripsina/química , Inhibidores de Tripsina/farmacologíaRESUMEN
With the rising popularity of fragment-based approaches in drug development, more and more attention has to be devoted to the detection of false-positive screening results. In particular, the small size and low affinity of fragments drives screening techniques to their limit. The pursuit of a false-positive hit can cause significant loss of time and resources. Here, we present an instructive and intriguing investigation into the origin of misleading assay results for a fragment that emerged as the most potent binder for the aspartic protease endothiapepsin (EP) across multiple screening assays. This molecule shows its biological effect mainly after conversion into another entity through a reaction cascade that involves major rearrangements of its heterocyclic scaffold. The formed ligand binds EP through an induced-fit mechanism involving remarkable electrostatic interactions. Structural information in the initial screening proved to be crucial for the identification of this false-positive hit.
Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Diseño de Fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Sordariales/enzimología , Ácido Aspártico Endopeptidasas/química , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Ligandos , Simulación del Acoplamiento Molecular , Unión ProteicaRESUMEN
BACKGROUND: Detailed characterization of the thermodynamic signature of weak binding fragments to proteins is essential to support the decision making process which fragments to take further for the hit-to-lead optimization. METHOD: Isothermal titration calorimetry (ITC) is the method of choice to record thermodynamic data, however, weak binding ligands such as fragments require the development of meaningful and reliable measuring protocols as usually sigmoidal titration curves are hardly possible to record due to limited solubility. RESULTS: Fragments can be titrated either directly under low c-value conditions (no sigmoidal curve) or indirectly by use of a strong binding ligand displacing the pre-incubated weak fragment from the protein. The determination of Gibbs free energy is reliable and rather independent of the applied titration protocol. CONCLUSION: Even though the displacement method achieves higher accuracy, the obtained enthalpy-entropy profile depends on the properties of the used displacement ligand. The relative enthalpy differences across different displacement experiments reveal a constant signature and can serve as a thermodynamic fingerprint for fragments. Low c-value titrations are only reliable if the final concentration of the fragment in the sample cell exceeds 2-10 fold its K(D) value. Limited solubility often prevents this strategy. GENERAL SIGNIFICANCE: The present study suggests an applicable protocol to characterize the thermodynamic signature of protein-fragment binding. It shows however, that such measurements are limited by protein and fragment solubility. Deviating profiles obtained by use of different displacement ligands indicate that changes in the solvation pattern and protein dynamics most likely take influence on the resulting overall binding signature.
Asunto(s)
Calorimetría/métodos , Unión Proteica , TermodinámicaRESUMEN
Small-molecule ligands binding with partial disorder or enhanced residual mobility are usually assumed as unfavorable with respect to their binding properties. Considering thermodynamics, disorder or residual mobility is entropically favorable and contributes to the Gibbs energy of binding. In the present study, we analyzed a series of congeneric ligands inhibiting the tRNA-modifying enzyme TGT. Attached to the parent lin-benzoguanine scaffold, substituents in position 2 accommodate in a flat solvent-exposed pocket and exhibit varying degree of residual mobility. This is indicated in the crystal structures by enhanced B-factors, reduced occupancies, or distributions over split conformers. MD simulations of the complexes suggest an even larger scatter over several conformational families. Introduction of a terminal acidic group fixes the substituent by a salt-bridge to an Arg residue. Overall, all substituted derivatives show the same affinity underpinning that neither order nor disorder is a determinant factor for binding affinity. The additional salt bridge remains strongly solvent-exposed and thus does not contribute to affinity. MD suggests temporary fluctuation of this contact.
Asunto(s)
Glicosiltransferasas/metabolismo , ARN de Transferencia/metabolismo , Sitios de Unión , Glicosiltransferasas/química , Ligandos , Simulación de Dinámica Molecular , Estructura Molecular , ARN de Transferencia/químicaRESUMEN
The type II transmembrane serine protease matriptase is a potential target for anticancer therapy and might be involved in cartilage degradation in osteoarthritis or inflammatory skin disorders. Starting from previously described nonspecific thrombin and factor Xa inhibitors we have prepared new noncovalent substrate-analogs with superior potency against matriptase. The most suitable compound 35 (H-d-hTyr-Ala-4-amidinobenzylamide) binds to matriptase with an inhibition constant of 26 nM and has more than 10-fold reduced activity against thrombin and factor Xa. The crystal structure of inhibitor 35 was determined in the surrogate protease trypsin, the obtained complex was used to model the binding mode of inhibitor 35 in the active site of matriptase. The methylene insertion in d-hTyr and d-hPhe increases the flexibility of the P3 side chain compared to their d-Phe analogs, which enables an improved binding of these inhibitors in the well-defined S3/4 pocket of matriptase. Inhibitor 35 can be used for further biochemical studies with matriptase.
Asunto(s)
Inhibidores Enzimáticos/farmacología , Factor Xa/metabolismo , Serina Endopeptidasas/metabolismo , Trombina/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores del Factor Xa/farmacología , Humanos , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Trombina/metabolismoRESUMEN
The enzyme tRNA-guanine transglycosylase has been identified as a drug target for the foodborne illness shigellosis. A key challenge in structure-based design for this enzyme is the filling of the polar ribose-34 pocket. Herein, we describe a novel series of ligands consisting of furanoside-appended lin-benzoguanines. They were designed to replace a conserved water cluster and differ by the functional groups at C(2) and C(3) of the furanosyl moiety being either OH or OMe. The unfavorable desolvation of Asp102 and Asp280, which are located close to the ribose-34 pocket, had a significant impact on binding affinity. While the enzyme has tRNA as its natural substrate, X-ray co-crystal structures revealed that the furanosyl moieties of the ligands are not accommodated in the tRNA ribose-34 site, but at the location of the adjacent phosphate group. A remarkable similarity of the position of the oxygen atoms in these two structures suggests furanosides as a potential phosphate isoster.
Asunto(s)
Guanina/metabolismo , Pentosiltransferasa/metabolismo , Fosfatos/metabolismo , Agua/química , Bencimidazoles/síntesis química , Bencimidazoles/química , Bencimidazoles/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Diseño de Fármacos , Guanina/química , Ligandos , Conformación Molecular , Simulación del Acoplamiento Molecular , Pentosiltransferasa/química , Fosfatos/química , Zymomonas/enzimologíaRESUMEN
Successful lead optimization in structure-based drug discovery depends on the correct deduction and interpretation of the underlying structure-activity relationships (SAR) to facilitate efficient decision-making on the next candidates to be synthesized. Consequently, the question arises, how frequently a binding mode (re)-validation is required, to ensure not to be misled by invalid assumptions on the binding geometry. We present an example in which minor chemical modifications within one inhibitor series lead to surprisingly different binding modes. X-ray structure determination of eight inhibitors derived from one core scaffold resulted in four different binding modes in the aspartic protease endothiapepsin, a well-established surrogate for e.g. renin and ß-secretase. In addition, we suggest an empirical metrics that might serve as an indicator during lead optimization to qualify compounds as candidates for structural revalidation.
Asunto(s)
Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/farmacología , Inhibidores de Proteasas/farmacología , Tiofenos/farmacología , Ácido Aspártico Endopeptidasas/síntesis química , Ácido Aspártico Endopeptidasas/química , Ácido Aspártico Endopeptidasas/metabolismo , Sitios de Unión/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/química , Relación Estructura-Actividad , Tiofenos/síntesis química , Tiofenos/químicaRESUMEN
Clostridium propionicum is the only organism known to ferment ß-alanine, a constituent of coenzyme A (CoA) and the phosphopantetheinyl prosthetic group of holo-acyl carrier protein. The first step in the fermentation is a CoA-transfer to ß-alanine. Subsequently, the resulting ß-alanyl-CoA is deaminated by the enzyme ß-alanyl-CoA:ammonia lyase (Acl) to reversibly form ammonia and acrylyl-CoA. We have determined the crystal structure of Acl in its apo-form at a resolution of 0.97 Å as well as in complex with CoA at a resolution of 1.59 Å. The structures reveal that the enyzme belongs to a superfamily of proteins exhibiting a so called "hot dog fold" which is characterized by a five-stranded antiparallel ß-sheet with a long α-helix packed against it. The functional unit of all "hot dog fold" proteins is a homodimer containing two equivalent substrate binding sites which are established by the dimer interface. In the case of Acl, three functional dimers combine to a homohexamer strongly resembling the homohexamer formed by YciA-like acyl-CoA thioesterases. Here, we propose an enzymatic mechanism based on the crystal structure of the Acl·CoA complex and molecular docking.
Asunto(s)
Amoníaco-Liasas/ultraestructura , Clostridium/enzimología , Pliegue de Proteína , Secuencia de Aminoácidos , Sitios de Unión , Coenzima A/metabolismo , Cristalografía por Rayos X , Fermentación/fisiología , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Complejos Multiproteicos , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Alineación de Secuencia , beta-Alanina/metabolismoRESUMEN
The matrix protein VP40 of the highly pathogenic Sudan virus (genus Orthoebolavirus) is a multifunctional protein responsible for the recruitment of viral nucleocapsids to the plasma membrane and the budding of infectious virions. In addition to its role in assembly, VP40 also downregulates viral genome replication and transcription. VP40's existence in various homo-oligomeric states is presumed to underpin its diverse functional capabilities during the viral life cycle. Given the absence of licensed therapeutics targeting the Sudan virus, our study focused on inhibiting VP40 dimers, the structural precursors to critical higher-order oligomers, as a novel antiviral strategy. We have established a crystallographic screening pipeline for the identification of small-molecule fragments capable of binding to VP40. Dimeric VP40 of the Sudan virus was recombinantly expressed in bacteria, purified, crystallized, and soaked in a solution of 96 different preselected fragments. Salicylic acid was identified as a crystallographic hit with clear electron density in the pocket between the N- and the C-termini of the VP40 dimer. The binding interaction is predominantly coordinated by amino acid residues leucine 158 (L158) and arginine 214 (R214), which are key in stabilizing salicylic acid within the binding pocket. While salicylic acid displayed minimal impact on the functional aspects of VP40, we delved deeper into characterizing the druggability of the identified binding pocket. We analyzed the influence of residues L158 and R214 on the formation of virus-like particles and viral RNA synthesis. Site-directed mutagenesis of these residues to alanine markedly affected both VP40's budding activity and its effect on viral RNA synthesis, underscoring the potential of the salicylic acid binding pocket as a drug target. In summary, our findings lay the foundation for structure-guided drug design to provide lead compounds against Sudan virus VP40.
RESUMEN
Pateamines, derived from the sponge Mycale hentscheli, function as inhibitors of the RNA helicase eIF4A and exhibit promising antiviral and anticancer properties. eIF4A plays a pivotal role in unwinding stable RNA structures within the 5'-UTR of selected mRNAs, facilitating the binding of the 43S preinitiation complex during translation initiation. Pateamines function by clamping RNA substrates onto the eIF4A surface, effectively preventing eIF4A from carrying out the unwinding step. Rocaglates, a compound class isolated from plants of the genus Aglaia, target the same binding pocket on eIF4A, and based on structural data, a similar mode of action has been proposed for pateamines and rocaglates. In this study, we conducted a detailed characterization of pateamines' binding mode and assessed their antiviral activity against human pathogenic coronaviruses (human coronavirus 229E (HCoV-229E), Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)). Our findings reveal significant differences in the binding behavior of pateamines compared to rocaglates when interacting with an eIF4A-RNA complex. We also observed that pateamines do not depend on the presence of a polypurine tract in the RNA substrate for efficient RNA clamping, as it is the case for rocaglates. Most notably, pateamines demonstrate potent antiviral activity against coronaviruses in the low nanomolar range. Consequently, pateamines broaden our toolbox for combating viruses that rely on the host enzyme eIF4A to conduct their viral protein synthesis, indicating a possible future treatment strategy against new or re-emerging pathogenic viruses.
RESUMEN
Coniferyl alcohol 9-O-methyltransferase from Linum nodiflorum (Linaceae) catalyzes the unusual methylation of the side-chain hydroxyl group of coniferyl alcohol. The protein was heterologously expressed in Escherichia coli as a hexahistidine derivative and purified for crystallization. Diffracting crystals were obtained of the pure protein and of its selenomethionine derivative, as well as of complexes with coniferyl alcohol and with S-adenosyl-L-homocysteine together with coniferyl alcohol 9-O-methyl ether (PDB entries 4ems, 4e70 and 4evi, respectively). The X-ray structures show that the phenylpropanoid binding mode differs from other phenylpropanoid O-methyltransferases such as caffeic acid O-methyltransferase. Moreover, the active site lacks the usually conserved and catalytic histidine residue and thus implies a different reaction mode for methylation. Site-directed mutagenesis was carried out to identify critical amino acids. The binding order of coniferyl alcohol and S-adenosyl-L-methionine was investigated by isothermal titration calorimetry experiments.
Asunto(s)
Lino/enzimología , Metiltransferasas/química , Metiltransferasas/metabolismo , Fenoles/metabolismo , Secuencia de Aminoácidos , Calorimetría/métodos , Dominio Catalítico , Cristalografía por Rayos X , Metiltransferasas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fenoles/química , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformación Proteica , S-Adenosilmetionina/metabolismo , Homología de Secuencia de AminoácidoRESUMEN
The tRNA-modifying enzyme tRNA-guanine transglycosylase (TGT) has been recognized as a drug target for the treatment of the foodborne illness shigellosis. The active site of TGT consists of three pockets: the central guanine/preQ1 recognition site and the ribose-33 and ribose-34 pockets. In previous work, lin-benzoguanines and lin-benzohypoxanthines, which differ by the presence of an exocyclic NH2 group in the former and its absence in the latter, were used as central scaffolds that bind to the guanine/preQ1 recognition site and allow suitable functionalization along exit vectors targeting the two ribose pockets. The substituents for both of these two pockets have been optimized individually. Here, a series of bifunctionalized inhibitors that occupy both ribose pockets are reported for the first time. Dissociation constants Kd down to the picomolar range were measured for the bifunctionalized lin-benzoguanine-based ligands and Kd values in the nanomolar range were measured for the corresponding lin-benzohypoxanthine-based ligands. The binding mode of all inhibitors was elucidated by X-ray crystal structure analysis. A remarkable influence of the crystallization protocol on the solvation pattern in the solid state and the residual mobility of the bound ligands was observed.