Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Glob Chang Biol ; 28(2): 524-541, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34626040

RESUMEN

Carbon isotope discrimination (Δ13 C) in C3 woody plants is a key variable for the study of photosynthesis. Yet how Δ13 C varies at decadal scales, and across regions, and how it is related to gross primary production (GPP), are still incompletely understood. Here we address these questions by implementing a new Δ13 C modelling capability in the land-surface model JULES incorporating both photorespiratory and mesophyll-conductance fractionations. We test the ability of four leaf-internal CO2 concentration models embedded in JULES to reproduce leaf and tree-ring (TR) carbon isotopic data. We show that all the tested models tend to overestimate average Δ13 C values, and to underestimate interannual variability in Δ13 C. This is likely because they ignore the effects of soil water stress on stomatal behavior. Variations in post-photosynthetic isotopic fractionations across species, sites and years, may also partly explain the discrepancies between predicted and TR-derived Δ13 C values. Nonetheless, the "least-cost" (Prentice) model shows the lowest biases with the isotopic measurements, and lead to improved predictions of canopy-level carbon and water fluxes. Overall, modelled Δ13 C trends vary strongly between regions during the recent (1979-2016) historical period but stay nearly constant when averaged over the globe. Photorespiratory and mesophyll effects modulate the simulated global Δ13 C trend by 0.0015 ± 0.005‰ and -0.0006 ± 0.001‰ ppm-1 , respectively. These predictions contrast with previous findings based on atmospheric carbon isotope measurements. Predicted Δ13 C and GPP tend to be negatively correlated in wet-humid and cold regions, and in tropical African forests, but positively related elsewhere. The negative correlation between Δ13 C and GPP is partly due to the strong dominant influences of temperature on GPP and vapor pressure deficit on Δ13 C in those forests. Our results demonstrate that the combined analysis of Δ13 C and GPP can help understand the drivers of photosynthesis changes in different climatic regions.


Asunto(s)
Ecosistema , Plantas , Ciclo del Carbono , Dióxido de Carbono , Isótopos de Carbono , Fotosíntesis , Hojas de la Planta
2.
Nature ; 535(7611): 241-5, 2016 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-27362222

RESUMEN

Differences in phenological responses to climate change among species can desynchronise ecological interactions and thereby threaten ecosystem function. To assess these threats, we must quantify the relative impact of climate change on species at different trophic levels. Here, we apply a Climate Sensitivity Profile approach to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, to quantify variation in climate sensitivity. The direction, magnitude and timing of climate sensitivity varied markedly among organisms within taxonomic and trophic groups. Despite this variability, we detected systematic variation in the direction and magnitude of phenological climate sensitivity. Secondary consumers showed consistently lower climate sensitivity than other groups. We used mid-century climate change projections to estimate that the timing of phenological events could change more for primary consumers than for species in other trophic levels (6.2 versus 2.5-2.9 days earlier on average), with substantial taxonomic variation (1.1-14.8 days earlier on average).


Asunto(s)
Cambio Climático/estadística & datos numéricos , Ecosistema , Animales , Organismos Acuáticos , Clima , Conjuntos de Datos como Asunto , Predicción , Lluvia , Estaciones del Año , Especificidad de la Especie , Temperatura , Factores de Tiempo , Reino Unido
3.
Proc Natl Acad Sci U S A ; 111(9): 3233-8, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24344270

RESUMEN

The impacts of global climate change on different aspects of humanity's diverse life-support systems are complex and often difficult to predict. To facilitate policy decisions on mitigation and adaptation strategies, it is necessary to understand, quantify, and synthesize these climate-change impacts, taking into account their uncertainties. Crucial to these decisions is an understanding of how impacts in different sectors overlap, as overlapping impacts increase exposure, lead to interactions of impacts, and are likely to raise adaptation pressure. As a first step we develop herein a framework to study coinciding impacts and identify regional exposure hotspots. This framework can then be used as a starting point for regional case studies on vulnerability and multifaceted adaptation strategies. We consider impacts related to water, agriculture, ecosystems, and malaria at different levels of global warming. Multisectoral overlap starts to be seen robustly at a mean global warming of 3 °C above the 1980-2010 mean, with 11% of the world population subject to severe impacts in at least two of the four impact sectors at 4 °C. Despite these general conclusions, we find that uncertainty arising from the impact models is considerable, and larger than that from the climate models. In a low probability-high impact worst-case assessment, almost the whole inhabited world is at risk for multisectoral pressures. Hence, there is a pressing need for an increased research effort to develop a more comprehensive understanding of impacts, as well as for the development of policy measures under existing uncertainty.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ambiente , Calentamiento Global/estadística & datos numéricos , Modelos Teóricos , Política Pública , Agricultura/estadística & datos numéricos , Simulación por Computador , Ecosistema , Geografía , Calentamiento Global/economía , Humanos , Malaria/epidemiología , Temperatura , Abastecimiento de Agua/estadística & datos numéricos
4.
Int J Biometeorol ; 61(10): 1837-1848, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28500390

RESUMEN

Exposure to pollen can contribute to increased hospital admissions for asthma exacerbation. This study applied an ecological time series analysis to examine associations between atmospheric concentrations of different pollen types and the risk of hospitalization for asthma in London from 2005 to 2011. The analysis examined short-term associations between daily pollen counts and hospital admissions in the presence of seasonal and long-term patterns, and allowed for time lags between exposure and admission. Models were adjusted for temperature, precipitation, humidity, day of week, and air pollutants. Analyses revealed an association between daily counts (continuous) of grass pollen and adult hospital admissions for asthma in London, with a 4-5-day lag. When grass pollen concentrations were categorized into Met Office pollen 'alert' levels, 'very high' days (vs. 'low') were associated with increased admissions 2-5 days later, peaking at an incidence rate ratio of 1.46 (95%, CI 1.20-1.78) at 3 days. Increased admissions were also associated with 'high' versus 'low' pollen days at a 3-day lag. Results from tree pollen models were inconclusive and likely to have been affected by the shorter pollen seasons and consequent limited number of observation days with higher tree pollen concentrations. Future reductions in asthma hospitalizations may be achieved by better understanding of environmental risks, informing improved alert systems and supporting patients to take preventive measures.


Asunto(s)
Asma/epidemiología , Hospitalización/estadística & datos numéricos , Polen , Adolescente , Adulto , Contaminantes Atmosféricos/análisis , Alérgenos/análisis , Monitoreo del Ambiente , Humanos , Londres/epidemiología , Persona de Mediana Edad , Poaceae , Árboles , Adulto Joven
5.
Nature ; 448(7157): 1037-41, 2007 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-17728755

RESUMEN

In addition to influencing climatic conditions directly through radiative forcing, increasing carbon dioxide concentration influences the climate system through its effects on plant physiology. Plant stomata generally open less widely under increased carbon dioxide concentration, which reduces transpiration and thus leaves more water at the land surface. This driver of change in the climate system, which we term 'physiological forcing', has been detected in observational records of increasing average continental runoff over the twentieth century. Here we use an ensemble of experiments with a global climate model that includes a vegetation component to assess the contribution of physiological forcing to future changes in continental runoff, in the context of uncertainties in future precipitation. We find that the physiological effect of doubled carbon dioxide concentrations on plant transpiration increases simulated global mean runoff by 6 per cent relative to pre-industrial levels; an increase that is comparable to that simulated in response to radiatively forced climate change (11 +/- 6 per cent). Assessments of the effect of increasing carbon dioxide concentrations on the hydrological cycle that only consider radiative forcing will therefore tend to underestimate future increases in runoff and overestimate decreases. This suggests that freshwater resources may be less limited than previously assumed under scenarios of future global warming, although there is still an increased risk of drought. Moreover, our results highlight that the practice of assessing the climate-forcing potential of all greenhouse gases in terms of their radiative forcing potential relative to carbon dioxide does not accurately reflect the relative effects of different greenhouse gases on freshwater resources.


Asunto(s)
Dióxido de Carbono/metabolismo , Efecto Invernadero , Plantas/metabolismo , Lluvia , Agua/análisis , Modelos Biológicos , Fotosíntesis , Transpiración de Plantas , Temperatura , Agua/metabolismo
6.
J Econ Entomol ; 115(5): 1342-1349, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-35348697

RESUMEN

Myzus persicae (Sulzer, Hemiptera: Aphididae) is a major global crop pest; it is the primary aphid vector for many damaging viruses and has developed resistance to most insecticides. In temperate regions, the risk of widespread crop infection and yield loss is heightened following warm winters, which encourage rapid population growth and early flight. Estimates of the frequency and magnitude of warm winters are, therefore, helpful for understanding and managing this risk. However, it is difficult to quantify the statistical distribution of climate events, particularly extremes, because climate observations represent just a small sample of the possible climate variations in a region. The purpose of this study was to establish a large-scale relationship between temperature and M. persicae observations across the UK and apply this to a very large ensemble of climate model simulations, which better sample the variability in climate, to quantify the current likelihood of extreme early M. persicae flight across the UK. The timing of M. persicae flight was shown to be significantly related to January-February mean temperature, where a 1°C warmer/cooler temperature relates to about 12 d earlier/later flight. Climate model simulations predict 40% likelihood of experiencing a year with unprecedented early M. persicae flight during the next decade in the UK. Results from this method can help crop managers assess the long-term viability of crops and management practices across the UK and provide early warning information for targeting pest surveillance activities on the locations and timings at highest risk of early M. persicae flight.


Asunto(s)
Áfidos , Insecticidas , Animales , Reino Unido
7.
J Geophys Res Biogeosci ; 127(12): e2022JG007041, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37034424

RESUMEN

Stable carbon isotopes in plants can help evaluate and improve the representation of carbon and water cycles in land-surface models, increasing confidence in projections of vegetation response to climate change. Here, we evaluated the predictive skills of the Joint UK Land Environmental Simulator (JULES) to capture spatio-temporal variations in carbon isotope discrimination (Δ13C) reconstructed by tree rings at 12 sites in the United Kingdom over the period 1979-2016. Modeled and measured Δ13C time series were compared at each site and their relationships with local climate investigated. Modeled Δ13C time series were significantly correlated (p < 0.05) with tree-ring Δ13C at eight sites, but JULES underestimated mean Δ13C values at all sites, by up to 2.6‰. Differences in mean Δ13C may result from post-photosynthetic isotopic fractionations that were not considered in JULES. Inter-annual variability in Δ13C was also underestimated by JULES at all sites. While modeled Δ13C typically increased over time across the UK, tree-ring Δ13C values increased only at five sites located in the northern regions but decreased at the southern-most sites. Considering all sites together, JULES captured the overall influence of environmental drivers on Δ13C but failed to capture the direction of change in Δ13C caused by air temperature, atmospheric CO2 and vapor pressure deficit at some sites. Results indicate that the representation of carbon-water coupling in JULES could be improved to reproduce both the trend and magnitude of interannual variability in isotopic records, the influence of local climate on Δ13C, and to reduce uncertainties in predicting vegetation-environment interactions.

8.
Emerg Top Life Sci ; 4(5): 497-511, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32935835

RESUMEN

Pests, pathogens and diseases cause some of the most widespread and damaging impacts worldwide - threatening lives and leading to severe disruption to economic, environmental and social systems. The overarching goal of biosecurity is to protect the health and security of plants and animals (including humans) and the wider environment from these threats. As nearly all living organisms and biological systems are sensitive to weather and climate, meteorological, 'met', data are used extensively in biosecurity. Typical applications include, (i) bioclimatic modelling to understand and predict organism distributions and responses, (ii) risk assessment to estimate the probability of events and horizon scan for future potential risks, and (iii) early warning systems to support outbreak management. Given the vast array of available met data types and sources, selecting which data is most effective for each of these applications can be challenging. Here we provide an overview of the different types of met data available and highlight their use in a wide range of biosecurity studies and applications. We argue that there are many synergies between meteorology and biosecurity, and these provide opportunities for more widespread integration and collaboration across the disciplines. To help communicate typical uses of meteorological data in biosecurity to a wide audience we have designed the 'Meteorology for biosecurity' infographic.


Asunto(s)
Meteorología , Plantas , Animales , Humanos , Probabilidad , Medición de Riesgo , Tiempo (Meteorología)
9.
PLoS One ; 14(8): e0221057, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31454397

RESUMEN

Bemisia tabaci (the tobacco whitefly) is an important agricultural pest of global significance primarily because of its ability to transmit multiple damaging plant viruses. To date, UK outbreaks of the whitefly have been restricted to glasshouses and there are no records of the whitefly establishing outdoors during the summer. This is despite the fact that annual degree-day models (that estimate accumulated warmth over the year above the development threshold), indicate that B. tabaci has the thermal potential for multiple summer generations in the UK. A set of 49 climate indices calculated using the present day climate (1986-2015) were therefore compared between the UK and the south of France, where B. tabaci is able to establish outdoors, to identify the factors limiting its establishment. The number of cold days and nights in summer, as well as the time spent within the whitefly's optimum temperature range, were most significantly different between the two areas. These indices may impact the development of B. tabaci and offer an explanation for the absence of the whitefly outdoors in the UK during the summer. Further analyses undertaken with climate projections suggest that in a 2-4°C warmer world this pest could pose a risk to outdoor UK crops in July and August. A clear south-north gradient can be demonstrated for these indices. Linking any possible northwards spread of B. tabaci populations outdoors in France with changes in these indices could therefore provide an important indicator of any change in the risks of outdoor populations of this species developing in the UK. The effectiveness of climate indices in pest risk analysis is compellingly demonstrated, and it is recommended that in-depth comparisons of climatic indices between areas of pest presence and absence are conducted in other situations where forecasting the risks of pest establishment are complex and challenging.


Asunto(s)
Cambio Climático , Productos Agrícolas/parasitología , Hemípteros/fisiología , Control de Plagas , Animales , Productos Agrícolas/crecimiento & desarrollo , Europa (Continente) , Francia , Hemípteros/patogenicidad , Humanos , Estaciones del Año , Reino Unido
10.
Sci Total Environ ; 599-600: 483-499, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28482306

RESUMEN

Allergenic pollen is produced by the flowers of a number of trees, grasses and weeds found throughout the UK. Exposure to such pollen grains can exacerbate pollen-related asthma and allergenic conditions such as allergic rhinitis (hay fever). Maps showing the location of these allergenic taxa have many applications: they can be used to provide advice on risk assessments; combined with health data to inform research on health impacts such as respiratory hospital admissions; combined with weather data to improve pollen forecasting systems; or as inputs to pollen emission models. In this study we present 1km resolution maps of 12 taxa of trees, grass and weeds found in the UK. We have selected the main species recorded by the UK pollen network. The taxa mapped in this study were: Alnus (alder), Fraxinus (ash), Betula (birch), Corylus (hazel), Quercus (oak), Pinus (pine) and Salix (willow), Poaceae (grass), Artemisia (mugwort), Plantago (plantain), Rumex (dock, sorrels) and Urtica (nettle). We also focus on one high population centre and present maps showing local level detail around the city of London. Our results show the different geographical distributions of the 12 taxa of trees, weeds and grass, which can be used to study plants in the UK associated with allergy and allergic asthma. These maps have been produced in order to study environmental exposure and human health, although there are many possible applications. This novel method not only provides maps of many different plant types, but also at high resolution across regions of the UK, and we uniquely present 12 key plant taxa using a consistent methodology. To consider the impact on human health due to exposure of the pollen grains, it is important to consider the timing of pollen release, and its dispersal, as well as the effect on air quality, which is also discussed here.


Asunto(s)
Alérgenos/análisis , Exposición a Riesgos Ambientales , Monitoreo del Ambiente , Polen/clasificación , Ciudades , Humanos , Londres , Malezas/clasificación , Poaceae/clasificación , Estaciones del Año , Árboles/clasificación
11.
Philos Trans R Soc Lond B Biol Sci ; 370(1665)2015 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-25688012

RESUMEN

Arguably one of the most important effects of climate change is the potential impact on human health. While this is likely to take many forms, the implications for future transmission of vector-borne diseases (VBDs), given their ongoing contribution to global disease burden, are both extremely important and highly uncertain. In part, this is owing not only to data limitations and methodological challenges when integrating climate-driven VBD models and climate change projections, but also, perhaps most crucially, to the multitude of epidemiological, ecological and socio-economic factors that drive VBD transmission, and this complexity has generated considerable debate over the past 10-15 years. In this review, we seek to elucidate current knowledge around this topic, identify key themes and uncertainties, evaluate ongoing challenges and open research questions and, crucially, offer some solutions for the field. Although many of these challenges are ubiquitous across multiple VBDs, more specific issues also arise in different vector-pathogen systems.


Asunto(s)
Cambio Climático , Clima , Enfermedades Transmisibles/transmisión , Vectores de Enfermedades , Animales , Humanos , Factores Socioeconómicos
12.
Philos Trans A Math Phys Eng Sci ; 369(1934): 67-84, 2011 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-21115513

RESUMEN

The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) assessed a range of scenarios of future greenhouse-gas emissions without policies to specifically reduce emissions, and concluded that these would lead to an increase in global mean temperatures of between 1.6°C and 6.9°C by the end of the twenty-first century, relative to pre-industrial. While much political attention is focused on the potential for global warming of 2°C relative to pre-industrial, the AR4 projections clearly suggest that much greater levels of warming are possible by the end of the twenty-first century in the absence of mitigation. The centre of the range of AR4-projected global warming was approximately 4°C. The higher end of the projected warming was associated with the higher emissions scenarios and models, which included stronger carbon-cycle feedbacks. The highest emissions scenario considered in the AR4 (scenario A1FI) was not examined with complex general circulation models (GCMs) in the AR4, and similarly the uncertainties in climate-carbon-cycle feedbacks were not included in the main set of GCMs. Consequently, the projections of warming for A1FI and/or with different strengths of carbon-cycle feedbacks are often not included in a wider discussion of the AR4 conclusions. While it is still too early to say whether any particular scenario is being tracked by current emissions, A1FI is considered to be as plausible as other non-mitigation scenarios and cannot be ruled out. (A1FI is a part of the A1 family of scenarios, with 'FI' standing for 'fossil intensive'. This is sometimes erroneously written as A1F1, with number 1 instead of letter I.) This paper presents simulations of climate change with an ensemble of GCMs driven by the A1FI scenario, and also assesses the implications of carbon-cycle feedbacks for the climate-change projections. Using these GCM projections along with simple climate-model projections, including uncertainties in carbon-cycle feedbacks, and also comparing against other model projections from the IPCC, our best estimate is that the A1FI emissions scenario would lead to a warming of 4°C relative to pre-industrial during the 2070s. If carbon-cycle feedbacks are stronger, which appears less likely but still credible, then 4°C warming could be reached by the early 2060s in projections that are consistent with the IPCC's 'likely range'.


Asunto(s)
Cambio Climático , Calentamiento Global , Agricultura , Dióxido de Carbono/química , Conservación de los Recursos Naturales , Planeta Tierra , Ecología , Modelos Teóricos , Investigación/tendencias , Temperatura , Abastecimiento de Agua
13.
Oecologia ; 144(1): 45-54, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15868163

RESUMEN

Associations between delta13C values and leaf gas exchanges and tree-ring or needle growth, used in ecophysiological compositions, can be complex depending on the relative timing of CO2 uptake and subsequent redistribution and allocation of carbon to needle and stem components. For palaeoenvironmental and dendroecological studies it is often interpreted in terms of a simple model of delta13C fractionation in C3 plants. However, in spite of potential complicating factors, few studies have actually examined these relationships in mature trees over inter- and intra-annual time-scales. Here, we present results from a 4 years study that investigated the links between variations in leaf gas-exchange properties, growth, and dated delta13C values along the needles and across tree rings of Aleppo pine trees growing in a semi-arid region under natural conditions or with supplemental summer irrigation. Sub-sections of tissue across annual rings and along needles, for which time of formation was resolved from growth rate analyses, showed rapid growth and delta13C responses to changing environmental conditions. Seasonal cycles of growth and delta13C (up to approximately 4 per thousand) significantly correlated (P < 0.01) with photosynthetically active radiation, vapour pressure deficit, air temperature, and soil water content. The irrigation significantly increased leaf net assimilation, stomatal conductance and needle and tree-ring growth rate, and markedly decreased needle and tree-ring delta13C values and its sensitivity to environmental parameters. The delta13C estimates derived from gas-exchange parameters, and weighted by assimilation, compared closely with seasonal and inter-annual delta13C values of needle- and tree-ring tissue. Higher stomatal conductances of the irrigated trees (0.22 vs. 0.08 mol m(-2) s(-1) on average) corresponded with approximately 2.0 per thousand lower average delta13C values, both measured and derived. Derived and measured delta13C values also indicated that needle growth, which occurs throughout the stressful summer was supported by carbon from concurrent, low rate assimilation. For Aleppo pine under semi-arid and irrigated conditions, the delta13C of tree-ring and needle material proved, in general, to be a reasonable indicator of integrated leaf gas-exchange properties.


Asunto(s)
Dióxido de Carbono/metabolismo , Ambiente , Pinus/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Tallos de la Planta/metabolismo , Árboles/crecimiento & desarrollo , Isótopos de Carbono/metabolismo , Israel , Pinus/metabolismo , Estaciones del Año , Temperatura , Árboles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA