RESUMEN
BACKGROUND: Clostridioides difficile was listed as an urgent antimicrobial resistance (AMR) threat in a report by the CDC in 2019. AMR drives the evolution of C. difficile and facilitates its emergence and spread. The C. difficile Antimicrobial Resistance Surveillance (CDARS) study is nationwide longitudinal surveillance of C. difficile infection (CDI) in Australia. OBJECTIVES: To determine the antimicrobial susceptibility of C. difficile isolated in Australia between 2015 and 2018. METHODS: A total of 1091 strains of C. difficile were collected over a 3 year period by a network of 10 diagnostic microbiology laboratories in five Australian states. These strains were tested for their susceptibility to nine antimicrobials using the CLSI agar incorporation method. RESULTS: All strains were susceptible to metronidazole, fidaxomicin, rifaximin and amoxicillin/clavulanate and low numbers of resistant strains were observed for meropenem (0.1%; 1/1091), moxifloxacin (3.5%; 38/1091) and vancomycin (5.7%; 62/1091). Resistance to clindamycin was common (85.2%; 929/1091), followed by resistance to ceftriaxone (18.8%; 205/1091). The in vitro activity of fidaxomicin [geometric mean MIC (GM)â=â0.101 mg/L] was superior to that of vancomycin (1.700 mg/L) and metronidazole (0.229 mg/L). The prevalence of MDR C. difficile, as defined by resistance to ≥3 antimicrobial classes, was low (1.7%; 19/1091). CONCLUSIONS: The majority of C. difficile isolated in Australia did not show reduced susceptibility to antimicrobials recommended for treatment of CDI (vancomycin, metronidazole and fidaxomicin). Resistance to carbapenems and fluoroquinolones was low and MDR was uncommon; however, clindamycin resistance was frequent. One fluoroquinolone-resistant ribotype 027 strain was detected.
Asunto(s)
Antiinfecciosos , Clostridioides difficile , Infecciones por Clostridium , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Australia/epidemiología , Clostridioides , Infecciones por Clostridium/epidemiología , Farmacorresistencia Bacteriana , Humanos , Pruebas de Sensibilidad Microbiana , RibotipificaciónRESUMEN
In the early 2000s, a binary toxin (CDT)-producing strain of Clostridium difficile, ribotype 027 (RT027), caused extensive outbreaks of diarrheal disease in North America and Europe. This strain has not become established in Australia, and there is a markedly different repertoire of circulating strains there compared to other regions of the world. The C. difficile Antimicrobial Resistance Surveillance (CDARS) study is a nationwide longitudinal surveillance study of C. difficile infection (CDI) in Australia. Here, we describe the molecular epidemiology of CDI in Australian health care and community settings over the first 5 years of the study, 2013 to 2018. Between 2013 and 2018, 10 diagnostic microbiology laboratories from five states in Australia participated in the CDARS study. From each of five states, one private (representing community) and one public (representing hospitals) laboratory submitted isolates of C. difficile or PCR-positive stool samples during two collection periods per year, February-March (summer/autumn) and August-September (winter/spring). C. difficile was characterized by toxin gene profiling and ribotyping. A total of 1,523 isolates of C. difficile were studied. PCR ribotyping yielded 203 different RTs, the most prevalent being RT014/020 (n = 449; 29.5%). The epidemic CDT+ RT027 (n = 2) and RT078 (n = 6), and the recently described RT251 (n = 10) and RT244 (n = 6) were not common, while RT126 (n = 17) was the most prevalent CDT+ type. A heterogeneous C. difficile population was identified. C. difficile RT014/020 was the most prevalent type found in humans with CDI. Continued surveillance of CDI in Australia remains critical for the detection of emerging strain lineages.
Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Australia/epidemiología , Clostridioides difficile/genética , Infecciones por Clostridium/epidemiología , Atención a la Salud , Europa (Continente) , Humanos , Laboratorios , América del Norte , RibotipificaciónRESUMEN
Clostridioides difficile infection (CDI) remains a significant public health threat globally. New interventions to treat CDI rely on an understanding of the evolution and epidemiology of circulating strains. Here we provide longitudinal genomic data on strain diversity, transmission dynamics and antimicrobial resistance (AMR) of C. difficile ribotypes (RTs) 014/020 (n=169), 002 (n=77) and 056 (n=36), the three most prominent C. difficile strains causing CDI in Australia. Genome scrutiny showed that AMR was uncommon in these lineages, with resistance-conferring alleles present in only 15/169 RT014/020 strains (8.9â%), 1/36 RT056 strains (2.78â%) and none of 77 RT002 strains. Notably, ~90â% of strains were resistant to MLSB agents in vitro, but only ~5.9â% harboured known resistance alleles, highlighting an incongruence between AMR genotype and phenotype. Core genome analyses revealed all three RTs contained genetically heterogeneous strain populations with limited evidence of clonal transmission between CDI cases. The average number of pairwise core genome SNP (cgSNP) differences within each RT group ranged from 23.3 (RT056, ST34, n=36) to 115.6 (RT002, ST8, n=77) and 315.9 (RT014/020, STs 2, 13, 14, 49, n=169). Just 19 clonal groups (encompassing 40 isolates), defined as isolates differing by ≤2 cgSNPs, were identified across all three RTs (RT014/020, n=14; RT002, n=3; RT056, n=2). Of these clonal groups, 63â% (12/19) comprised isolates from the same Australian State and 37â% (7/19) comprised isolates from different States. The low number of plausible transmission events found for these major RTs (and previously documented populations in animal and environmental sources/reservoirs) points to widespread and persistent community sources of diverse C. difficile strains as opposed to ongoing nationwide healthcare outbreaks dominated by a single clone. Together, these data provide new insights into the evolution of major lineages causing CDI in Australia and highlight the urgent need for enhanced surveillance, and for public health interventions to move beyond the healthcare setting and into a One Health paradigm to effectively combat this complex pathogen.