Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Br J Cancer ; 126(3): 482-491, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34471258

RESUMEN

BACKGROUND: Minimal residual disease (MRD) measurement is a cornerstone of contemporary acute lymphoblastic leukaemia (ALL) treatment. The presence of immunoglobulin (Ig) and T cell receptor (TCR) gene recombinations in leukaemic clones allows widespread use of patient-specific, DNA-based MRD assays. In contrast, paediatric solid tumour MRD remains experimental and has focussed on generic assays targeting tumour-specific messenger RNA, methylated DNA or microRNA. METHODS: We examined the feasibility of using whole-genome sequencing (WGS) data to design tumour-specific polymerase chain reaction (PCR)-based MRD tests (WGS-MRD) in 18 children with high-risk relapsed cancer, including ALL, high-risk neuroblastoma (HR-NB) and Ewing sarcoma (EWS) (n = 6 each). RESULTS: Sensitive WGS-MRD assays were generated for each patient and allowed quantitation of 1 tumour cell per 10-4 (0.01%)-10-5 (0.001%) mononuclear cells. In ALL, WGS-MRD and Ig/TCR-MRD were highly concordant. WGS-MRD assays also showed good concordance between quantitative PCR and droplet digital PCR formats. In serial clinical samples, WGS-MRD correlated with disease course. In solid tumours, WGS-MRD assays were more sensitive than RNA-MRD assays. CONCLUSIONS: WGS facilitated the development of patient-specific MRD tests in ALL, HR-NB and EWS with potential clinical utility in monitoring treatment response. WGS data could be used to design patient-specific MRD assays in a broad range of tumours.


Asunto(s)
Biomarcadores de Tumor/genética , Reordenamiento Génico , Neoplasia Residual/patología , Neuroblastoma/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Sarcoma de Ewing/patología , Secuenciación Completa del Genoma/métodos , Adolescente , Neoplasias Óseas/sangre , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Proteína Proto-Oncogénica N-Myc/genética , Neoplasia Residual/genética , Neuroblastoma/sangre , Neuroblastoma/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangre , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteína Proto-Oncogénica c-fli-1/genética , Receptores de Antígenos de Linfocitos T/genética , Sarcoma de Ewing/sangre , Sarcoma de Ewing/genética , Regulador Transcripcional ERG/genética
2.
Br J Cancer ; 127(5): 908-915, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35650277

RESUMEN

BACKGROUND: ABL-class fusions including NUP214-ABL1 and EBF1-PDGFRB occur in high risk acute lymphoblastic leukaemia (ALL) with gene expression patterns similar to BCR-ABL-positive ALL. Our aim was to evaluate new DNA-based measurable residual disease (MRD) tests detecting these fusions and IKZF1-deletions in comparison with conventional immunoglobulin/T-cell receptor (Ig/TCR) markers. METHODS: Precise genomic breakpoints were defined from targeted or whole genome next generation sequencing for ABL-fusions and BCR-ABL1. Quantitative PCR assays were designed and used to re-measure MRD in remission bone marrow samples previously tested using Ig/TCR markers. All MRD testing complied with EuroMRD guidelines. RESULTS: ABL-class patients had 46% 5year event-free survival and 79% 5year overall survival. All had sensitive fusion tests giving high concordance between Ig/TCR and ABL-class fusion results (21 patients, n = 257 samples, r2 = 0.9786, P < 0.0001) and Ig/TCR and IKZF1-deletion results (9 patients, n = 143 samples, r2 = 0.9661, P < 0.0001). In contrast, in BCR-ABL1 patients, Ig/TCR and BCR-ABL1 tests were discordant in 32% (40 patients, n = 346 samples, r2 = 0.4703, P < 0.0001) and IKZF1-deletion results were closer to Ig/TCR (25 patients, n = 176, r2 = 0.8631, P < 0.0001). CONCLUSIONS: MRD monitoring based on patient-specific assays detecting gene fusions or recurrent assays for IKZF1-deletions is feasible and provides good alternatives to Ig/TCR tests to monitor MRD in ABL-class ALL.


Asunto(s)
Proteínas de Fusión bcr-abl , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Proteínas de Fusión bcr-abl/genética , Humanos , Inmunoglobulinas , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores de Antígenos de Linfocitos T/genética
3.
Br J Cancer ; 125(1): 55-64, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33837299

RESUMEN

BACKGROUND: The prognosis for high-risk childhood acute leukaemias remains dismal and established treatment protocols often cause long-term side effects in survivors. This study aims to identify more effective and safer therapeutics for these patients. METHODS: A high-throughput phenotypic screen of a library of 3707 approved drugs and pharmacologically active compounds was performed to identify compounds with selective cytotoxicity against leukaemia cells followed by further preclinical evaluation in patient-derived xenograft models. RESULTS: Auranofin, an FDA-approved agent for the treatment of rheumatoid arthritis, was identified as exerting selective anti-cancer activity against leukaemia cells, including patient-derived xenograft cells from children with high-risk ALL, versus solid tumour and non-cancerous cells. It induced apoptosis in leukaemia cells by increasing reactive oxygen species (ROS) and potentiated the activity of the chemotherapeutic cytarabine against highly aggressive models of infant MLL-rearranged ALL by enhancing DNA damage accumulation. The enhanced sensitivity of leukaemia cells towards auranofin was associated with lower basal levels of the antioxidant glutathione and higher baseline ROS levels compared to solid tumour cells. CONCLUSIONS: Our study highlights auranofin as a well-tolerated drug candidate for high-risk paediatric leukaemias that warrants further preclinical investigation for application in high-risk paediatric and adult acute leukaemias.


Asunto(s)
Auranofina/administración & dosificación , Citarabina/administración & dosificación , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Animales , Auranofina/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Niño , Citarabina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Femenino , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Bibliotecas de Moléculas Pequeñas , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Pediatr Blood Cancer ; 68(4): e28945, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33565233

RESUMEN

BACKGROUND: Presenting features, biology and outcome for childhood leukaemia are known to vary by ethnic origin, geographic location and socioeconomic group. This study aimed to compare presentation patterns, follow-up and clinical outcomes in Indigenous and non-Indigenous children with acute leukaemia in Australia, and to assess the impact of remoteness and area-based socioeconomic disadvantage on outcome. METHODS: A retrospective review of children aged between 1 day and 18 years who were diagnosed with acute leukaemia in South Australia (SA), Northern Territory (NT) and Western Australia (WA) between 2009 and 2018 was performed. Data were collected from children treated at the Women's and Children's Hospital, Adelaide and Perth Children's Hospital. RESULTS: Analysis of 455 children treated for acute leukaemia showed that children from remote/very remote localities had inferior overall survival (p = .004). Five-year overall survival was 91.7% (95% CI: 87.9-94.3%) for children with acute lymphoblastic leukaemia (ALL) and 69.8% (56.7-79.5%) for acute myeloid leukaemia (AML). A larger proportion of Indigenous children from SA/NT were diagnosed with AML compared to non-Indigenous children (60.0% vs. 14.4%, p = .001). Indigenous children were less likely to be enrolled on clinical trials (34.5% vs. 53.1%, p = .03) and more likely to be lost to follow-up (26.1% vs. 9.2%, p = .009). CONCLUSION: Geographic remoteness of residence is associated with inferior overall survival for Australian children with leukaemia. Indigenous children with acute leukaemia suffer from disparities in outcomes. These findings provide evidence to guide national policy in supporting appropriate resource allocation to overcome the challenges faced by children within these groups.


Asunto(s)
Leucemia/epidemiología , Adolescente , Australia/epidemiología , Niño , Preescolar , Femenino , Humanos , Lactante , Leucemia/terapia , Leucemia Mieloide Aguda/epidemiología , Leucemia Mieloide Aguda/terapia , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/epidemiología , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Estudios Retrospectivos , Población Rural , Análisis de Supervivencia
5.
Pediatr Blood Cancer ; 68(5): e28922, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33638292

RESUMEN

We report on the Australian experience of blinatumomab for treatment of 24 children with relapsed/refractory precursor B-cell acute lymphoblastic leukaemia (B-ALL) and high-risk genetics, resulting in a minimal residual disease (MRD) response rate of 58%, 2-year progression-free survival (PFS) of 39% and 2-year overall survival of 63%. In total, 83% (n = 20/24) proceeded to haematopoietic stem cell transplant, directly after blinatumomab (n = 12) or following additional salvage therapy (n = 8). Four patients successfully received CD19-directed chimeric antigen receptor T-cell therapy despite prior blinatumomab exposure. Inferior 2-year PFS was associated with MRD positivity (20%, n = 15) and in KMT2A-rearranged infants (15%, n = 9). Our findings highlight that not all children with relapsed/refractory B-ALL respond to blinatumomab and factors such as blast genotype may affect prognosis.


Asunto(s)
Anticuerpos Biespecíficos/uso terapéutico , Antineoplásicos/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Australia , Niño , Femenino , Humanos , Masculino , Recurrencia Local de Neoplasia/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Estudios Retrospectivos , Resultado del Tratamiento
6.
Int J Cancer ; 146(7): 1902-1916, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31325323

RESUMEN

Around 10% of acute leukemias harbor a rearrangement of the MLL/KMT2A gene, and the presence of this translocation results in a highly aggressive, therapy-resistant leukemia subtype with survival rates below 50%. There is a high unmet need to identify safer and more potent therapies for MLL-rearranged (MLL-r) leukemia that can be combined with established chemotherapeutics to decrease treatment-related toxicities. The curaxin, CBL0137, has demonstrated nongenotoxic anticancer and chemopotentiating effects in a number of preclinical cancer models and is currently in adult Phase I clinical trials for solid tumors and hematological malignancies. The aim of our study was to investigate whether CBL0137 has potential as a therapeutic and chemopotentiating compound in MLL-r leukemia through a comprehensive analysis of its efficacy in preclinical models of the disease. CBL0137 decreased the viability of a panel of MLL-r leukemia cell lines (n = 12) and xenograft cells derived from patients with MLL-r acute lymphoblastic leukemia (ALL, n = 3) in vitro with submicromolar IC50s. The small molecule drug was well-tolerated in vivo and significantly reduced leukemia burden in a subcutaneous MV4;11 MLL-r acute myeloid leukemia model and in patient-derived xenograft models of MLL-r ALL (n = 5). The in vivo efficacy of standard of care drugs used in remission induction for pediatric ALL was also potentiated by CBL0137. CBL0137 exerted its anticancer effect by trapping Facilitator of Chromatin Transcription (FACT) into chromatin, activating the p53 pathway and inducing an Interferon response. Our findings support further preclinical evaluation of CBL0137 as a new approach for the treatment of MLL-r leukemia.


Asunto(s)
Antineoplásicos/farmacología , Carbazoles/farmacología , Reordenamiento Génico , N-Metiltransferasa de Histona-Lisina/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Animales , Antineoplásicos/uso terapéutico , Apoptosis/genética , Carbazoles/uso terapéutico , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/genética , Humanos , Estimación de Kaplan-Meier , Leucemia Bifenotípica Aguda/diagnóstico , Leucemia Bifenotípica Aguda/tratamiento farmacológico , Leucemia Bifenotípica Aguda/genética , Leucemia Bifenotípica Aguda/mortalidad , Ratones , Transducción de Señal/efectos de los fármacos , Factores de Elongación Transcripcional/genética , Transcriptoma , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Int J Cancer ; 147(8): 2225-2238, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32277480

RESUMEN

Epithelial ovarian cancer (EOC) is a complex disease comprising discrete histological and molecular subtypes, for which survival rates remain unacceptably low. Tailored approaches for this deadly heterogeneous disease are urgently needed. Efflux pumps belonging to the ATP-binding cassette (ABC) family of transporters are known for roles in both drug resistance and cancer biology and are also highly targetable. Here we have investigated the association of ABCC4/MRP4 expression to clinical outcome and its biological function in endometrioid and serous tumors, common histological subtypes of EOC. We found high expression of ABCC4/MRP4, previously shown to be directly regulated by c-Myc/N-Myc, was associated with poor prognosis in endometrioid EOC (P = .001) as well as in a subset of serous EOC with a "high-MYCN" profile (C5/proliferative; P = .019). Transient siRNA-mediated suppression of MRP4 in EOC cells led to reduced growth, migration and invasion, with the effects being most pronounced in endometrioid and C5-like serous cells compared to non-C5 serous EOC cells. Sustained knockdown of MRP4 also sensitized endometrioid cells to MRP4 substrate drugs. Furthermore, suppression of MRP4 decreased the growth of patient-derived EOC cells in vivo. Together, our findings provide the first evidence that MRP4 plays an important role in the biology of Myc-associated ovarian tumors and highlight this transporter as a potential therapeutic target for EOC.


Asunto(s)
Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/patología , Genes myc/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patología , Resistencia a Antineoplásicos/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Pronóstico , ARN Interferente Pequeño/genética , Tasa de Supervivencia
8.
Drug Resist Updat ; 26: 1-9, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27180306

RESUMEN

The extrusion of anticancer drugs by members of the ATP-binding cassette (ABC) transporter family is one of the most widely recognized mechanisms of multidrug resistance, and can be considered a hijacking of their normal roles in the transport of xenobiotics, metabolites and signaling molecules across cell membranes. While roles in cancer multidrug resistance have been clearly demonstrated for P-glycoprotein (P-gp), Breast Cancer Resistance Protein (BCRP) and Multidrug Resistance Protein 1 (MRP1), direct evidence for a role in multidrug resistance in vivo is lacking for other family members. A less well understood but emerging theme is the drug efflux-independent contributions of ABC transporters to cancer biology, supported by a growing body of evidence that their loss or inhibition impacts on the malignant potential of cancer cells in vitro and in vivo. As with multidrug resistance, these contributions likely represent a hijacking of normal ABC transporter functions in the efflux of endogenous metabolites and signaling molecules, however they may expand the clinical relevance of ABC transporters beyond P-gp, BCRP and MRP1. This review summarizes established and emerging roles for ABC transporters in cancer, with a focus on neuroblastoma and ovarian cancer, and considers approaches to validate and better understand these roles.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Animales , Antineoplásicos/metabolismo , Transporte Biológico/fisiología , Resistencia a Múltiples Medicamentos , Femenino , Humanos , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología
9.
Nanomedicine ; 12(4): 977-986, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26767510

RESUMEN

Extracellular vesicles (EVs) play a role in a variety of physiological and pathological processes. However, use of EVs as biomarkers has been hampered by limitations of current detection and enumeration methods. We compared fluorescence-threshold flow cytometry (FT-FC) to nanoparticle tracking analysis (NTA) for enumeration of cell culture-derived EVs. FT-FC and NTA utilising fluorescence mode (F-NTA) enumerated similar numbers of EVs stained with a membrane dye PKH67. Both methods were sufficiently sensitive to detect cell-derived EVs above the background of culture medium. Light scatter NTA (LS-NTA) detected 10-100× more particles than either fluorescence-based method but demonstrated poor specificity. F-NTA appeared to have better sensitivity for <100nm vesicles, however, the FT-FC method combined direct enumeration of EVs with high sensitivity and specificity in the >100nm range. Due to wider availability and higher degree of automation and standardisation, FT-FC is a reasonable surrogate to F-NTA for quantification of EVs. FROM THE CLINICAL EDITOR: Extracellular vesicles are small particles, which can act as tools for intercellular communication. One recent area of interest in EVs is their potentials as biomarkers. In this article, the authors investigated and compared fluorescence-threshold flow cytometry (FT-FC) to nanoparticle tracking analysis (NTA) for the detection of EVs and showed that FT- FC method could be more advantageous. This technique should provide a new alternative for the future.


Asunto(s)
Biomarcadores , Comunicación Celular , Vesículas Extracelulares/metabolismo , Nanopartículas/administración & dosificación , Línea Celular Tumoral , Rastreo Celular/métodos , Vesículas Extracelulares/efectos de los fármacos , Citometría de Flujo , Colorantes Fluorescentes/administración & dosificación , Colorantes Fluorescentes/química , Humanos , Nanopartículas/química
10.
J Mol Med (Berl) ; 102(4): 507-519, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38349407

RESUMEN

Acute leukemia continues to be a major cause of death from disease worldwide and current chemotherapeutic agents are associated with significant morbidity in survivors. While better and safer treatments for acute leukemia are urgently needed, standard drug development pipelines are lengthy and drug repurposing therefore provides a promising approach. Our previous evaluation of FDA-approved drugs for their antileukemic activity identified disulfiram, used for the treatment of alcoholism, as a candidate hit compound. This study assessed the biological effects of disulfiram on leukemia cells and evaluated its potential as a treatment strategy. We found that disulfiram inhibits the viability of a diverse panel of acute lymphoblastic and myeloid leukemia cell lines (n = 16) and patient-derived xenograft cells from patients with poor outcome and treatment-resistant disease (n = 15). The drug induced oxidative stress and apoptosis in leukemia cells within hours of treatment and was able to potentiate the effects of daunorubicin, etoposide, topotecan, cytarabine, and mitoxantrone chemotherapy. Upon combining disulfiram with auranofin, a drug approved for the treatment of rheumatoid arthritis that was previously shown to exert antileukemic effects, strong and consistent synergy was observed across a diverse panel of acute leukemia cell lines, the mechanism of which was based on enhanced ROS induction. Acute leukemia cells were more sensitive to the cytotoxic activity of disulfiram than solid cancer cell lines and non-malignant cells. While disulfiram is currently under investigation in clinical trials for solid cancers, this study provides evidence for the potential of disulfiram for acute leukemia treatment. KEY MESSAGES: Disulfiram induces rapid apoptosis in leukemia cells by boosting oxidative stress. Disulfiram inhibits leukemia cell growth more potently than solid cancer cell growth. Disulfiram can enhance the antileukemic efficacy of chemotherapies. Disulfiram strongly synergises with auranofin in killing acute leukemia cells by ROS induction. We propose testing of disulfiram in clinical trial for patients with acute leukemia.


Asunto(s)
Disulfiram , Leucemia Mieloide Aguda , Humanos , Disulfiram/farmacología , Disulfiram/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Auranofina/farmacología , Auranofina/uso terapéutico , Línea Celular Tumoral , Leucemia Mieloide Aguda/metabolismo
11.
Gynecol Oncol ; 131(1): 8-14, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23917080

RESUMEN

OBJECTIVE: ABCB1 encodes the multi-drug efflux pump P-glycoprotein (P-gp) and has been implicated in multi-drug resistance. We comprehensively evaluated this gene and flanking regions for an association with clinical outcome in epithelial ovarian cancer (EOC). METHODS: The best candidates from fine-mapping analysis of 21 ABCB1 SNPs tagging C1236T (rs1128503), G2677T/A (rs2032582), and C3435T (rs1045642) were analysed in 4616 European invasive EOC patients from thirteen Ovarian Cancer Association Consortium (OCAC) studies and The Cancer Genome Atlas (TCGA). Additionally we analysed 1,562 imputed SNPs around ABCB1 in patients receiving cytoreductive surgery and either 'standard' first-line paclitaxel-carboplatin chemotherapy (n=1158) or any first-line chemotherapy regimen (n=2867). We also evaluated ABCB1 expression in primary tumours from 143 EOC patients. RESULT: Fine-mapping revealed that rs1128503, rs2032582, and rs1045642 were the best candidates in optimally debulked patients. However, we observed no significant association between any SNP and either progression-free survival or overall survival in analysis of data from 14 studies. There was a marginal association between rs1128503 and overall survival in patients with nil residual disease (HR 0.88, 95% CI 0.77-1.01; p=0.07). In contrast, ABCB1 expression in the primary tumour may confer worse prognosis in patients with sub-optimally debulked tumours. CONCLUSION: Our study represents the largest analysis of ABCB1 SNPs and EOC progression and survival to date, but has not identified additional signals, or validated reported associations with progression-free survival for rs1128503, rs2032582, and rs1045642. However, we cannot rule out the possibility of a subtle effect of rs1128503, or other SNPs linked to it, on overall survival.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Resistencia a Múltiples Medicamentos/genética , Resistencia a Antineoplásicos/genética , Neoplasias Glandulares y Epiteliales/tratamiento farmacológico , Neoplasias Glandulares y Epiteliales/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Subfamilia B de Transportador de Casetes de Unión a ATP , Carboplatino/administración & dosificación , Carcinoma Epitelial de Ovario , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Femenino , Humanos , Estimación de Kaplan-Meier , Neoplasias Glandulares y Epiteliales/cirugía , Neoplasias Ováricas/cirugía , Paclitaxel/administración & dosificación , Farmacogenética , Polimorfismo de Nucleótido Simple , Modelos de Riesgos Proporcionales
12.
Cancers (Basel) ; 14(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35454786

RESUMEN

BACKGROUND: Epithelial ovarian cancer (EOC) is the most lethal gynaecological malignancy with over 80% of cases already disseminated at diagnosis and facing a dismal five-year survival rate of 35%. EOC cells often spread to the greater omentum where they take-up cholesterol. Excessive amounts of cholesterol can be cytocidal, suggesting that cholesterol efflux through transporters may be important to maintain homeostasis, and this may explain the observation that high expression of the ATP-binding cassette A1 (ABCA1) cholesterol transporter has been associated with poor outcome in EOC patients. METHODS: ABCA1 expression was silenced in EOC cells to investigate the effect of inhibiting cholesterol efflux on EOC biology through growth and migration assays, three-dimensional spheroid culture and cholesterol quantification. RESULTS: ABCA1 suppression significantly reduced the growth, motility and colony formation of EOC cell lines as well as the size of EOC spheroids, whilst stimulating expression of ABCA1 reversed these effects. In serous EOC cells, ABCA1 suppression induced accumulation of cholesterol. Lowering cholesterol levels using methyl-B-cyclodextrin rescued the effect of ABCA1 suppression, restoring EOC growth. Furthermore, we identified FDA-approved agents that induced cholesterol accumulation and elicited cytocidal effects in EOC cells. CONCLUSIONS: Our data demonstrate the importance of ABCA1 in maintaining cholesterol balance and malignant properties in EOC cells, highlighting its potential as a therapeutic target for this disease.

13.
Front Oncol ; 12: 863329, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677155

RESUMEN

Rearrangements of the Mixed Lineage Leukemia (MLL/KMT2A) gene are present in approximately 10% of acute leukemias and characteristically define disease with poor outcome. Driven by the unmet need to develop better therapies for KMT2A-rearranged leukemia, we previously discovered that the novel anti-cancer agent, curaxin CBL0137, induces decondensation of chromatin in cancer cells, delays leukemia progression and potentiates standard of care chemotherapies in preclinical KMT2A-rearranged leukemia models. Based on the promising potential of histone deacetylase (HDAC) inhibitors as targeted anti-cancer agents for KMT2A-rearranged leukemia and the fact that HDAC inhibitors also decondense chromatin via an alternate mechanism, we investigated whether CBL0137 could potentiate the efficacy of the HDAC inhibitor panobinostat in KMT2A-rearranged leukemia models. The combination of CBL0137 and panobinostat rapidly killed KMT2A-rearranged leukemia cells by apoptosis and significantly delayed leukemia progression and extended survival in an aggressive model of MLL-AF9 (KMT2A:MLLT3) driven murine acute myeloid leukemia. The drug combination also exerted a strong anti-leukemia response in a rapidly progressing xenograft model derived from an infant with KMT2A-rearranged acute lymphoblastic leukemia, significantly extending survival compared to either monotherapy. The therapeutic enhancement between CBL0137 and panobinostat in KMT2A-r leukemia cells does not appear to be mediated through cooperative effects of the drugs on KMT2A rearrangement-associated histone modifications. Our data has identified the CBL0137/panobinostat combination as a potential novel targeted therapeutic approach to improve outcome for KMT2A-rearranged leukemia.

14.
Mol Oncol ; 15(4): 1162-1179, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33497018

RESUMEN

Approximately 25% of human neuroblastoma is caused by amplification of the MYCN oncogene, which leads to overexpression of N-Myc oncoprotein. The survival rate for this patient subtype is <50%. Here, we show that N-Myc protein bound to the DEAD-box RNA helicase DDX21 gene promoter and upregulated DDX21 mRNA and protein expression. Genome-wide differential gene expression studies identified centrosomal protein CEP55 as one of the genes most dramatically downregulated after DDX21 knockdown in MYCN-amplified neuroblastoma cells. Knocking down DDX21 or CEP55 reduced neuroblastoma cell cytoskeleton stability and cell proliferation and all but abolished clonogenic capacity. Importantly, DDX21 knockdown initially induced tumor regression in neuroblastoma-bearing mice and suppressed tumor progression. In human neuroblastoma tissues, a high level of DDX21 expression correlated with a high level of N-Myc expression and with CEP55 expression, and independently predicted poor patient prognosis. Taken together, our data show that DDX21 induces CEP55 expression, MYCN-amplified neuroblastoma cell proliferation, and tumorigenesis, and that DDX21 and CEP55 are valid therapeutic targets for the treatment of MYCN-amplified neuroblastoma.


Asunto(s)
Proteínas de Ciclo Celular/genética , ARN Helicasas DEAD-box/genética , Neuroblastoma/genética , Animales , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/patología , Regiones Promotoras Genéticas
15.
Front Oncol ; 11: 779859, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35127484

RESUMEN

Patients whose leukemias harbor a rearrangement of the Mixed Lineage Leukemia (MLL/KMT2A) gene have a poor prognosis, especially when the disease strikes in infants. The poor clinical outcome linked to this aggressive disease and the detrimental treatment side-effects, particularly in children, warrant the urgent development of more effective and cancer-selective therapeutics. The aim of this study was to identify novel candidate compounds that selectively target KMT2A-rearranged (KMT2A-r) leukemia cells. A library containing 3707 approved drugs and pharmacologically active compounds was screened for differential activity against KMT2A-r leukemia cell lines versus KMT2A-wild type (KMT2A-wt) leukemia cell lines, solid tumor cells and non-malignant cells by cell-based viability assays. The screen yielded SID7969543, an inhibitor of transcription factor Nuclear Receptor Subfamily 5 Group A Member 1 (NR5A1), that limited the viability of 7 out of 11 KMT2A-r leukemia cell lines including 5 out of 7 lines derived from infants, without affecting KMT2A-wt leukemia cells, solid cancer lines, non-malignant cell lines, or peripheral blood mononuclear cells from healthy controls. The compound also significantly inhibited growth of leukemia cell lines with a CALM-AF10 translocation, which defines a highly aggressive leukemia subtype that shares common underlying leukemogenic mechanisms with KMT2A-r leukemia. SID7969543 decreased KMT2A-r leukemia cell viability by inducing caspase-dependent apoptosis within hours of treatment and demonstrated synergy with established chemotherapeutics used in the treatment of high-risk leukemia. Thus, SID7969543 represents a novel candidate agent with selective activity against CALM-AF10 translocated and KMT2A-r leukemias that warrants further investigation.

16.
Cancers (Basel) ; 13(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918978

RESUMEN

Ornithine decarboxylase (ODC1), a critical regulatory enzyme in polyamine biosynthesis, is a direct transcriptional target of MYCN, amplification of which is a powerful marker of aggressive neuroblastoma. A single nucleotide polymorphism (SNP), G316A, within the first intron of ODC1, results in genotypes wildtype GG, and variants AG/AA. CRISPR-cas9 technology was used to investigate the effects of AG clones from wildtype MYCN-amplified SK-N-BE(2)-C cells and the effect of the SNP on MYCN binding, and promoter activity was investigated using EMSA and luciferase assays. AG clones exhibited decreased ODC1 expression, growth rates, and histone acetylation and increased sensitivity to ODC1 inhibition. MYCN was a stronger transcriptional regulator of the ODC1 promoter containing the G allele, and preferentially bound the G allele over the A. Two neuroblastoma cohorts were used to investigate the clinical impact of the SNP. In the study cohort, the minor AA genotype was associated with improved survival, while poor prognosis was associated with the GG genotype and AG/GG genotypes in MYCN-amplified and non-amplified patients, respectively. These effects were lost in the GWAS cohort. We have demonstrated that the ODC1 G316A polymorphism has functional significance in neuroblastoma and is subject to allele-specific regulation by the MYCN oncoprotein.

17.
Clin Cancer Res ; 27(15): 4338-4352, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33994371

RESUMEN

PURPOSE: We investigated whether targeting chromatin stability through a combination of the curaxin CBL0137 with the histone deacetylase (HDAC) inhibitor, panobinostat, constitutes an effective multimodal treatment for high-risk neuroblastoma. EXPERIMENTAL DESIGN: The effects of the drug combination on cancer growth were examined in vitro and in animal models of MYCN-amplified neuroblastoma. The molecular mechanisms of action were analyzed by multiple techniques including whole transcriptome profiling, immune deconvolution analysis, immunofluorescence, flow cytometry, pulsed-field gel electrophoresis, assays to assess cell growth and apoptosis, and a range of cell-based reporter systems to examine histone eviction, heterochromatin transcription, and chromatin compaction. RESULTS: The combination of CBL0137 and panobinostat enhanced nucleosome destabilization, induced an IFN response, inhibited DNA damage repair, and synergistically suppressed cancer cell growth. Similar synergistic effects were observed when combining CBL0137 with other HDAC inhibitors. The CBL0137/panobinostat combination significantly delayed cancer progression in xenograft models of poor outcome high-risk neuroblastoma. Complete tumor regression was achieved in the transgenic Th-MYCN neuroblastoma model which was accompanied by induction of a type I IFN and immune response. Tumor transplantation experiments further confirmed that the presence of a competent adaptive immune system component allowed the exploitation of the full potential of the drug combination. CONCLUSIONS: The combination of CBL0137 and panobinostat is effective and well-tolerated in preclinical models of aggressive high-risk neuroblastoma, warranting further preclinical and clinical investigation in other pediatric cancers. On the basis of its potential to boost IFN and immune responses in cancer models, the drug combination holds promising potential for addition to immunotherapies.


Asunto(s)
Carbazoles/administración & dosificación , Carbazoles/farmacología , Cromatina/efectos de los fármacos , Inhibidores de Histona Desacetilasas/administración & dosificación , Inhibidores de Histona Desacetilasas/farmacología , Neuroblastoma/tratamiento farmacológico , Panobinostat/administración & dosificación , Panobinostat/farmacología , Animales , Combinación de Medicamentos , Evaluación Preclínica de Medicamentos , Ratones , Células Tumorales Cultivadas
18.
J Cell Biochem ; 110(5): 1123-9, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20544796

RESUMEN

Mammalian alpha4 phosphoprotein, the homolog of yeast Tap42, is a component of the mammalian target-of-rapamycin (mTOR) pathway that regulates ribogenesis, the initiation of translation, and cell-cycle progression. alpha4 is known to interact with the catalytic subunit of protein phosphatase 2A (PP2Ac) and to regulate PP2A activity. Using alpha4 as bait in yeast two-hybrid screening of a human K562 erythroleukemia cDNA library, EDD (E3 isolated by differential display) E3 ubiquitin ligase was identified as a new protein partner of alpha4. EDD is the mammalian ortholog of Drosophila hyperplastic discs gene (hyd) that controls cell proliferation during development. The EDD protein contains a PABC domain that is present in poly(A)-binding protein (PABP), suggesting that PABP may also interact with alpha4. PABP recruits translation factors to the poly(A)-tails of mRNAs. In the present study, immunoprecipitation/immunoblotting (IP/IB) analyses showed a physical interaction between alpha4 and EDD in rat Nb2 T-lymphoma and human MCF-7 breast cancer cell lines. alpha4 also interacted with PABP in Nb2, MCF-7 and the human Jurkat T-leukemic and K562 myeloma cell lines. COS-1 cells, transfected with Flag-tagged-pSG5-EDD, gave a (Flag)-EDD-alpha4 immunocomplex. Furthermore, deletion mutants of alpha4 were constructed to determine the binding site for EDD. IP/IB analysis showed that EDD bound to the C-terminal region of alpha4, independent of the alpha4-PP2Ac binding site. Therefore, in addition to PP2Ac, alpha4 interacts with EDD and PABP, suggesting its involvement in multiple steps in the mTOR pathway that leads to translation initiation and cell-cycle progression.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Humanos , Immunoblotting , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/genética , Células Jurkat , Células K562 , Chaperonas Moleculares , Fosfoproteínas/genética , Proteínas de Unión a Poli(A)/genética , Unión Proteica , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas/genética
19.
Cancer Res ; 80(17): 3706-3718, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32651259

RESUMEN

The ability of the N-MYC transcription factor to drive cancer progression is well demonstrated in neuroblastoma, the most common extracranial pediatric solid tumor, where MYCN amplification heralds a poor prognosis, with only 11% of high-risk patients surviving past 5 years. However, decades of attempts of direct inhibition of N-MYC or its paralogues has led to the conclusion that this protein is "undruggable." Therefore, targeting pathways upregulated by N-MYC signaling presents an alternative therapeutic approach. Here, we show that MYCN-amplified neuroblastomas are characterized by elevated rates of protein synthesis and that high expression of ABCE1, a translation factor directly upregulated by N-MYC, is itself a strong predictor of poor clinical outcome. Despite the potent ability of N-MYC in heightening protein synthesis and malignant characteristics in cancer cells, suppression of ABCE1 alone selectively negated this effect, returning the rate of translation to baseline levels and significantly reducing the growth, motility, and invasiveness of MYCN-amplified neuroblastoma cells and patient-derived xenograft tumors in vivo. The growth of nonmalignant cells or MYCN-nonamplified neuroblastoma cells remained unaffected by reduced ABCE1, supporting a therapeutic window associated with targeting ABCE1. Neuroblastoma cells with c-MYC overexpression also required ABCE1 to maintain cell proliferation and translation. Taken together, ABCE1-mediated translation constitutes a critical process in the progression of N-MYC-driven and c-MYC-driven cancers that warrants investigations into methods of its therapeutic inhibition. SIGNIFICANCE: These findings demonstrate that N-MYC-driven cancers are reliant on elevated rates of protein synthesis driven by heightened expression of ABCE1, a vulnerability that can be exploited through suppression of ABCE1.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/genética , Neuroblastoma/patología , Transportadoras de Casetes de Unión a ATP/genética , Animales , Progresión de la Enfermedad , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Proteína Proto-Oncogénica N-Myc/metabolismo , Biosíntesis de Proteínas , ARN Mensajero
20.
Biochem Pharmacol ; 172: 113770, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31862449

RESUMEN

The antimetabolite 6-mercaptopurine (6-MP) is an important component in the treatment of specific cancer subtypes, however, the development of drug resistance and dose-limiting toxicities can limit its effectiveness. The therapeutic activity of 6-MP requires cellular uptake, enzymatic conversion to thio-GMP and incorporation of thio-GTP into RNA and DNA, as well as inhibition of de novo purine synthesis by methyl-thio-IMP. Mechanisms that prevent 6-MP entry into the cell, prevent 6-MP metabolism or deplete thiopurine intermediates, can all lead to 6-MP resistance. We previously conducted a high-throughput screen for inhibitors of the multidrug transporter MRP4 using 6-MP sensitivity as the readout. In addition to MRP4-specific inhibitors, we identified a compound, CCI52, that sensitized cell lines to 6-MP independent of this transporter. CCI52 and its more stable analogue CCI52-14 also function as effective chemosensitizers in vivo, substantially extending survival in a transgenic mouse cancer model treated with 6-MP. Chemosensitization was associated with an increase in thio-IMP, suggesting that CCI52 functions directly on 6-MP uptake or metabolism. In addition to its chemosensitizing effects, CCI52 and CCI52-14 inhibited the growth of MYCN-amplified high-risk neuroblastoma cell lines and delayed tumor progression in a MYCN-driven, transgenic mouse model of neuroblastoma. These multifunctional inhibitors may be useful for the further development of anticancer agents and as tools to better understand 6-MP metabolism.


Asunto(s)
Antimetabolitos Antineoplásicos/uso terapéutico , Mercaptopurina/administración & dosificación , Mercaptopurina/farmacología , Neuroblastoma/tratamiento farmacológico , Tiazoles/farmacología , Animales , Antimetabolitos Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Transgénicos , Estructura Molecular , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Neoplasias Experimentales/tratamiento farmacológico , Neuroblastoma/patología , Tiazoles/efectos adversos , Tiazoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA