Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Oecologia ; 197(4): 1111-1126, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34647165

RESUMEN

A shift to higher temperatures has left the Mediterranean Europe and Northern Africa (MENA) region more vulnerable to drought and land degradation. We used MODIS LAI (leaf area index) and GPP (gross primary production) deficits, the differences between actual and historical-maximum values, to describe vegetation structural and functional changes and consequential landcover change in response to changing climate conditions during 2001-2019 in the area (20° W-45° E, 20° N-45° N). We found that 1) the vegetation responses varied significantly among eight landcover types with the decreasing importance: forests, savannas, a mosaic of cropland and natural vegetation (CNV), croplands, permanent wetlands, urban land, grasslands, and shrublands, each with distinctive yet overlapping signatures over the ranges of the climate conditions considered. 2) Forests, occupying the coolest and wettest niche, showed the strongest response to severe drought with a lag of 1-3 years and a legacy effect for 10 years. Shrubs, occupying the hottest and driest niche, were the most resilient under a hotter and drier climate. 3) The total areas of savannas and CNV increased by 394,994 and 404,592 km2, respectively, while that of forests decreased by 33,091 km2. Shrublands extended by 287,134 km2 while grasslands and croplands retreated by 490,644 and 225,263 km2. The area of wetlands increased by 49,192 km2, and that of urban land increased by 39,570 km2. A total of 57,649 km2 of barren land became vegetated over the years. Along with higher temperature and more extended period of drought, MENA has evolved towards a shrubbier landscape.


Asunto(s)
Cambio Climático , Bosques , Clima , Sequías , Región Mediterránea
2.
Glob Chang Biol ; 20(8): 2492-504, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24604779

RESUMEN

Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2 ) and tropospheric ozone (O3 ) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity (NPP). Elevated CO2 enhanced ecosystem C content by 11%, whereas elevated O3 decreased ecosystem C content by 9%. There was little variation in treatment effects on C content across communities and no meaningful interactions between CO2 and O3 . Treatment effects on ecosystem C content resulted primarily from changes in the near-surface mineral soil and tree C, particularly differences in woody tissues. Excluding the mineral soil, cumulative NPP was a strong predictor of ecosystem C content (r(2) = 0.96). Elevated CO2 enhanced cumulative NPP by 39%, a consequence of a 28% increase in canopy nitrogen (N) content (g N m(-2) ) and a 28% increase in N productivity (NPP/canopy N). In contrast, elevated O3 lowered NPP by 10% because of a 21% decrease in canopy N, but did not impact N productivity. Consequently, as the marginal impact of canopy N on NPP (∆NPP/∆N) decreased through time with further canopy development, the O3 effect on NPP dissipated. Within the mineral soil, there was less C in the top 0.1 m of soil under elevated O3 and less soil C from 0.1 to 0.2 m in depth under elevated CO2 . Overall, these results suggest that elevated CO2 may create a sustained increase in NPP, whereas the long-term effect of elevated O3 on NPP will be smaller than expected. However, changes in soil C are not well-understood and limit our ability to predict changes in ecosystem C content.


Asunto(s)
Contaminantes Atmosféricos/farmacología , Dióxido de Carbono/farmacología , Carbono/análisis , Bosques , Ozono/farmacología , Árboles/efectos de los fármacos , Acer/efectos de los fármacos , Acer/crecimiento & desarrollo , Betula/efectos de los fármacos , Betula/crecimiento & desarrollo , Biomasa , Ecosistema , Modelos Teóricos , Suelo/química , Árboles/crecimiento & desarrollo , Estados Unidos
3.
Plant Cell Environ ; 31(9): 1317-24, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18518914

RESUMEN

A rising global population and demand for protein-rich diets are increasing pressure to maximize agricultural productivity. Rising atmospheric [CO(2)] is altering global temperature and precipitation patterns, which challenges agricultural productivity. While rising [CO(2)] provides a unique opportunity to increase the productivity of C(3) crops, average yield stimulation observed to date is well below potential gains. Thus, there is room for improving productivity. However, only a fraction of available germplasm of crops has been tested for CO(2) responsiveness. Yield is a complex phenotypic trait determined by the interactions of a genotype with the environment. Selection of promising genotypes and characterization of response mechanisms will only be effective if crop improvement and systems biology approaches are closely linked to production environments, that is, on the farm within major growing regions. Free air CO(2) enrichment (FACE) experiments can provide the platform upon which to conduct genetic screening and elucidate the inheritance and mechanisms that underlie genotypic differences in productivity under elevated [CO(2)]. We propose a new generation of large-scale, low-cost per unit area FACE experiments to identify the most CO(2)-responsive genotypes and provide starting lines for future breeding programmes. This is necessary if we are to realize the potential for yield gains in the future.


Asunto(s)
Dióxido de Carbono/metabolismo , Productos Agrícolas/fisiología , Abastecimiento de Alimentos , Proyectos de Investigación , Aclimatación , Aire , Productos Agrícolas/genética , Genotipo , Efecto Invernadero , Fenotipo , Fotosíntesis/fisiología
5.
Appl Radiat Isot ; 62(1): 97-107, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15498691

RESUMEN

Monte Carlo codes are extensively used for probabilistic simulations of various physical systems. These codes are widely used in calculations of neutron and gamma ray transport in soil for radiation shielding, soil activation by neutrons, well logging industry, and in simulations of complex nuclear gauges for in soil measurements. However, these calculations are complicated by the diversity of soils in which the proportions of solid, liquid and gas vary considerably together with extensive variations in soil elemental composition, morphology, and density. Nevertheless use of these codes requires knowledge of the elemental composition and density of the soil and its physical characteristics as input information for performing these calculations. It is shown that not always all of the soil parameters are critical but depend on the objectives of the calculations. An approach for identifying soil elemental composition and some simplifying assumptions for implementing the transport codes are presented.


Asunto(s)
Algoritmos , Modelos Químicos , Modelos Estadísticos , Método de Montecarlo , Radiometría/métodos , Contaminantes Radiactivos del Suelo/análisis , Suelo/análisis , Monitoreo del Ambiente/métodos , Dosis de Radiación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
6.
Oecologia ; 104(2): 139-146, 1995 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28307350

RESUMEN

Physiological responses to elevated CO2 at the leaf and canopy-level were studied in an intact pine (Pinus taeda) forest ecosystem exposed to elevated CO2 using a free-air CO2 enrichment (FACE) technique. Normalized canopy water-use of trees exposed to elevated CO2 over an 8-day exposure period was similar to that of trees exposed to current ambient CO2 under sunny conditions. During a portion of the exposure period when sky conditions were cloudy, CO2-exposed trees showed minor (≤7%) but significant reductions in relative sap flux density compared to trees under ambient CO2 conditions. Short-term (minutes) direct stomatal responses to elevated CO2 were also relatively weak (≈5% reduction in stomatal aperture in response to high CO2 concentrations). We observed no evidence of adjustment in stomatal conductance in foliage grown under elevated CO2 for nearly 80 days compared to foliage grown under current ambient CO2, so intrinsic leaf water-use efficiency at elevated CO2 was enhanced primarily by direct responses of photosynthesis to CO2. We did not detect statistical differences in parameters from photosynthetic responses to intercellular CO2 (A net-C i curves) for Pinus taeda foliage grown under elevated CO2 (550 µmol mol-1) for 50-80 days compared to those for foliage grown under current ambient CO2 from similar-sized reference trees nearby. In both cases, leaf net photosynthetic rate at 550 µmol mol-1 CO2 was enhanced by approximately 65% compared to the rate at ambient CO2 (350 µmol mol-1). A similar level of enhancement under elevated CO2 was observed for daily photosynthesis under field conditions on a sunny day. While enhancement of photosynthesis by elevated CO2 during the study period appears to be primarily attributable to direct photosynthetic responses to CO2 in the pine forest, longer-term CO2 responses and feedbacks remain to be evaluated.

7.
Sci Rep ; 4: 5472, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24980649

RESUMEN

At biome-scale, terrestrial carbon uptake is controlled mainly by weather variability. Observational data from a global monitoring network indicate that the sensitivity of terrestrial carbon sequestration to mean annual temperature (T) breaks down at a threshold value of 16°C, above which terrestrial CO2 fluxes are controlled by dryness rather than temperature. Here we show that since 1948 warming climate has moved the 16°C T latitudinal belt poleward. Land surface area with T > 16°C and now subject to dryness control rather than temperature as the regulator of carbon uptake has increased by 6% and is expected to increase by at least another 8% by 2050. Most of the land area subjected to this warming is arid or semiarid with ecosystems that are highly vulnerable to drought and land degradation. In areas now dryness-controlled, net carbon uptake is ~27% lower than in areas in which both temperature and dryness (T < 16°C) regulate plant productivity. This warming-induced extension of dryness-controlled areas may be triggering a positive feedback accelerating global warming. Continued increases in land area with T > 16°C has implications not only for positive feedback on climate change, but also for ecosystem integrity and land cover, particularly for pastoral populations in marginal lands.

8.
Trends Plant Sci ; 15(1): 5-10, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19955012

RESUMEN

Current forest Free Air CO(2) Enrichment (FACE) experiments are reaching completion. Therefore, it is time to define the scientific goals and priorities of future experimental facilities. In this opinion article, we discuss the following three overarching issues (i) What are the most urgent scientific questions and how can they be addressed? (ii) What forest ecosystems should be investigated? (iii) Which other climate change factors should be coupled with elevated CO(2) concentrations in future experiments to better predict the effects of climate change? Plantations and natural forests can have conflicting purposes for high productivity and environmental protection. However, in both cases the assessment of carbon balance and how this will be affected by elevated CO(2) concentrations and the interacting climate change factors is the most pressing priority for future experiments.


Asunto(s)
Dióxido de Carbono/análisis , Árboles/metabolismo , Dióxido de Carbono/metabolismo , Ecosistema , Efecto Invernadero
10.
New Phytol ; 168(3): 623-36, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16313645

RESUMEN

Concentrations of atmospheric CO(2) and tropospheric ozone (O(3)) are rising concurrently in the atmosphere, with potentially antagonistic effects on forest net primary production (NPP) and implications for terrestrial carbon sequestration. Using free-air CO(2) enrichment (FACE) technology, we exposed north-temperate forest communities to concentrations of CO(2) and O(3) predicted for the year 2050 for the first 7 yr of stand development. Site-specific allometric equations were applied to annual nondestructive growth measurements to estimate above- and below-ground biomass and NPP for each year of the experiment. Relative to the control, elevated CO(2) increased total biomass 25, 45 and 60% in the aspen, aspen-birch and aspen-maple communities, respectively. Tropospheric O(3) caused 23, 13 and 14% reductions in total biomass relative to the control in the respective communities. Combined fumigation resulted in total biomass response of -7.8, +8.4 and +24.3% relative to the control in the aspen, aspen-birch and aspen-sugar maple communities, respectively. These results indicate that exposure to even moderate levels of O(3) significantly reduce the capacity of NPP to respond to elevated CO(2) in some forests.


Asunto(s)
Acer/crecimiento & desarrollo , Betula/crecimiento & desarrollo , Dióxido de Carbono/farmacología , Ozono/farmacología , Populus/crecimiento & desarrollo , Acer/efectos de los fármacos , Betula/efectos de los fármacos , Biomasa , Carbono/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Populus/efectos de los fármacos , Madera
11.
Nature ; 420(6914): 403-7, 2002 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-12459738

RESUMEN

Human activity causes increasing background concentrations of the greenhouse gases CO2 and O3. Increased levels of CO2 can be found in all terrestrial ecosystems. Damaging O3 concentrations currently occur over 29% of the world's temperate and subpolar forests but are predicted to affect fully 60% by 2100 (ref. 3). Although individual effects of CO2 and O3 on vegetation have been widely investigated, very little is known about their interaction, and long-term studies on mature trees and higher trophic levels are extremely rare. Here we present evidence from the most widely distributed North American tree species, Populus tremuloides, showing that CO2 and O3, singly and in combination, affected productivity, physical and chemical leaf defences and, because of changes in plant quality, insect and disease populations. Our data show that feedbacks to plant growth from changes induced by CO2 and O3 in plant quality and pest performance are likely. Assessments of global change effects on forest ecosystems must therefore consider the interacting effects of CO2 and O3 on plant performance, as well as the implications of increased pest activity.


Asunto(s)
Atmósfera/química , Dióxido de Carbono/análisis , Efecto Invernadero , Insectos/fisiología , Ozono/análisis , Populus/parasitología , Árboles/parasitología , Animales , Áfidos/fisiología , Basidiomycota/fisiología , Ecosistema , Interacciones Huésped-Parásitos , Lepidópteros/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Hojas de la Planta/microbiología , Hojas de la Planta/parasitología , Dinámica Poblacional , Populus/microbiología , Árboles/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA