Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Opt Express ; 27(26): 37446-37453, 2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31878524

RESUMEN

Despite the rapidly increasing demand for accurate ultraviolet (UV) detection in various applications, conventional Si-based UV sensors are less accurate due to disruption by visible light. Recently, Ga(Al)N-based photodiodes have attracted great interest as viable platforms that can avoid such issues because their wide bandgap enables efficient detection of UV light and they are theoretically blind to visible and infrared light. However, the heteroepitaxy of a Ga(Al)N layer on sapphire substrates inevitably leads to defects, and the Ga(Al)N photodiode (PD) becomes not perfectly insensible to visible light. Employment of a dielectric stacked UV pass filter is possible to avoid unwanted absorption of visible light, but the angle-dependent pass band limits the detection angle. Here, we have demonstrated the Ag-Al2O3 Fabry-Perot UV pass filter-integrated AlGaN ultraviolet photodiode. The inherent optical extinction characteristics of Ag was utilized to design the fabrication-tolerant UV pass filter with a peak transmittance at ∼325 nm. As the angle of incidence increased, the peak transmission decreased from 45% to 10%, but the relative transmission spectrum remained almost unchanged. By integrating these filters, the visible light rejection ratio (responsivity for 315 nm light to responsivity for 405 nm light) was improved by a factor of 10, reaching a value of 106 at angles of up to 80 degrees.

2.
Sensors (Basel) ; 18(11)2018 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-30423877

RESUMEN

We demonstrate a photoacoustic sensor capable of measuring high-energy nanosecond optical pulses in terms of temporal width and energy fluence per pulse. This was achieved by using a hybrid combination of a carbon nanotube-polydimethylsiloxane (CNT-PDMS)-based photoacoustic transmitter (i.e., light-to-sound converter) and a piezoelectric receiver (i.e., sound detector). In this photoacoustic energy sensor (PES), input pulsed optical energy is heavily absorbed by the CNT-PDMS composite film and then efficiently converted into an ultrasonic output. The output ultrasonic pulse is then measured and analyzed to retrieve the input optical characteristics. We quantitatively compared the PES performance with that of a commercial thermal energy meter. Due to the efficient energy transduction and sensing mechanism of the hybrid structure, the minimum-measurable pulsed optical energy was significantly lowered, ~157 nJ/cm², corresponding to 1/760 of the reference pyroelectric detector. Moreover, despite the limited acoustic frequency bandwidth of the piezoelectric receiver, laser pulse widths over a range of 6⁻130 ns could be measured with a linear relationship to the ultrasound pulse width of 22⁻153 ns. As CNT has a wide electromagnetic absorption spectrum, the proposed pulsed sensor system can be extensively applied to high-energy pulse measurement over visible through terahertz spectral ranges.

3.
Phys Chem Chem Phys ; 19(15): 9739-9744, 2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28367577

RESUMEN

Upconversion nanoparticles (UCNPs) have attracted enormous interest over the past few years because of their unique optical properties and potential for use in various applications such as bioimaging probes, biosensors, and light-harvesting materials for photovoltaics. The improvement of imaging resolution is one of the most important goals for UCNPs used in biological applications. Super-resolution imaging techniques that overcome the fundamental diffraction limit of light rely on the photochemistry of organic dyes or fluorescent proteins. Here we report our progress toward super-resolution microscopy with UCNPs. We found that the red emission (655 nm) of core/shell UCNPs with the structure NaYF4:Yb3+,Er3+/NaYF4 could be modulated by emission depletion (ED) of the intermediate state that interacts resonantly with an infrared beam (1540 nm). In contrast, the green emission bands (525 and 545 nm) of the UCNPs were less affected by irradiation with the infrared beam. The origin of such distinct behaviors between the green and red emissions was attributed to their different photophysical pathways.

4.
Proc Natl Acad Sci U S A ; 110(8): 2735-40, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23382183

RESUMEN

A spatial potential trap is formed in a 6.0-µm Al(Ga)N nanowire by varying the Al composition along its length during epitaxial growth. The polariton emission characteristics of a dielectric microcavity with the single nanowire embedded in-plane have been studied at room temperature. Excitation is provided at the Al(Ga)N end of the nanowire, and polariton emission is observed from the lowest bandgap GaN region within the potential trap. Comparison of the results with those measured in an identical microcavity with a uniform GaN nanowire and having an identical exciton-photon detuning suggests evaporative cooling of the polaritons as they are transported into the trap in the Al(Ga)N nanowire. Measurement of the spectral characteristics of the polariton emission, their momentum distribution, first-order spatial coherence, and time-resolved measurements of polariton cooling provides strong evidence of the formation of a near-equilibrium Bose-Einstein condensate in the GaN region of the nanowire at room temperature. In contrast, the condensate formed in the uniform GaN nanowire-dielectric microcavity without the spatial potential trap is only in self-equilibrium.

5.
Opt Express ; 23(11): A650-6, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26072889

RESUMEN

GaN nanowires and InGaN disk heterostructures are grown on an amorphous SiO2 layer by a plasma-assisted molecular beam epitaxy. Structural studies using scanning electron microscopy and high-resolution transmission electron microscopy reveal that the nanowires grow vertically without any extended defect similarly to nanowires grown on Si. The as-grown nanowires have an intermediate region consisting of Ga, O, and Si rather than SiNx at the interface between the nanowires and SiO2. The measured photoluminescence shows a variation of peak wavelengths ranging from 580 nm to 635 nm because of non-uniform indium incorporation. The nanowires grown on SiO2 are successfully transferred to a flexible polyimide sheet by Au-welding and epitaxial lift-off processes. The light-emitting diodes fabricated with the transferred nanowires are characterized by a turn-on voltage of approximately 4 V. The smaller turn-on voltage in contrast to those of conventional nanowire light-emitting diodes is due to the absence of an intermediate layer, which is removed during an epitaxial lift-off process. The measured electroluminescence shows peak wavelengths of 610-616 nm with linewidths of 116-123 nm.

6.
Opt Express ; 23(26): 33350-8, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26831999

RESUMEN

We propose an electrically tunable absorber based on epsilon-near-zero (ENZ) effect of graphene embedded in a nanocavity, which is composed of metal grating and substrate. Due to strong surface-normal electric field confined in ENZ graphene in the proposed structure, greatly enhanced light absorption (~80%) is achieved in an ultrathin graphene monolayer. By electrically controlling the Fermi-level of graphene, a sharp peak absorption wavelength is tuned over a wide range. The proposed device can work as an optical modulator or a tunable absorption filter, which has a unique feature of incident angle insensitiveness owing to the ENZ effect and magnetic dipole resonance. Moreover, existence of a significantly dominant electric field and its uniformity make the device performance independent of the position of the graphene layer in the nanocavity, which provides great fabrication tolerance.

7.
Nano Lett ; 13(6): 2376-80, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23634649

RESUMEN

Room-temperature polariton lasing from a GaN-dielectric microcavity is demonstrated with optical excitation. The device is fabricated with a GaN nanowire array clad by Si3N4/SiO2-distributed Bragg reflectors. The nanowire array is initially grown on silicon substrate by molecular beam epitaxy. A distinct nonlinearity in the lower polariton emission is observed at a threshold optical energy density of 625 nJ/cm(2), accompanied by significant line width narrowing to 5 meV and a small blue shift of ~1 meV. The measured polariton dispersion is characterized by a Rabi splitting of 40 meV and a cavity exciton detuning of -17 meV. The device described here is a demonstration of exciton-photon strong coupling phenomenon in an array of light emitters and paves the way for the realization of a room temperature electrically injected polariton laser.

8.
Phys Rev Lett ; 110(20): 206403, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-25167434

RESUMEN

Inversionless ultralow threshold coherent emission, or polariton lasing, can be obtained by spontaneous radiative recombination from a degenerate polariton condensate with nonresonant excitation. Such excitation has, hitherto, been provided by an optical source. Coherent emission from a GaAs-based quantum well microcavity diode with electrical injection is observed here. This is achieved by a combination of modulation doping of the wells, to invoke polariton-electron scattering, and an applied magnetic field in the Faraday geometry to enhance the exciton-polariton saturation density. These measures help to overcome the relaxation bottleneck and to form a macroscopic and degenerate condensate as evidenced by angle-resolved luminescence, light-current characteristics, spatial coherence, and output polarization. The experiments were performed at 30 K with an applied field of 7 T.

9.
ACS Nano ; 17(19): 18792-18804, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37781927

RESUMEN

Recently, the development of non-fullerene acceptors (NFAs) for near-infrared (NIR) organic photodetectors (OPDs) has attracted great interest due to their excellent NIR light absorption properties. Herein, we developed NFAs by substituting an electron-donating moiety (branched alkoxy thiophene (BAT)) asymmetrically (YOR1) and symmetrically (YOR2) for the Y6 framework. YOR1 exhibited nanoscale phase separation in a film blended with PTB7-Th. Moreover, substituting the BAT unit effectively extended the absorption wavelengths of YOR1 over 1000 nm by efficient intramolecular charge transfer and extension of the conjugation length. Consequently, YOR1-OPD exhibited significantly reduced dark current and improved responsivity by simultaneously satisfying optimal nanomorphology and significant suppression of charge recombination, resulting in 1.98 × 1013 and 3.38 × 1012 Jones specific detectivity at 950 and 1000 nm, respectively. Moreover, we successfully demonstrated the application of YOR1-OPD in highly sensitive photoplethysmography sensors using NIR light. This study suggests a strategic approach for boosting the overall performance of NIR OPDs targeting a 1000 nm light signal using an all-in-one (optimal morphology, suppressed dark current, and extended NIR absorption wavelength) NFA.

10.
Opt Express ; 20(11): 11830-7, 2012 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-22714170

RESUMEN

Strong coupling effects in a dielectric microcavity with a single ZnO nanowire embedded in it have been investigated at room temperature. A large Rabi splitting of ~100 meV is obtained from the polariton dispersion and a non-linearity in the polariton emission characteristics is observed at room temperature with a low threshold of 1.63 µJ/cm(2), which corresponds to a polariton density an order of magnitude smaller than that for the Mott transition. The momentum distribution of the lower polaritons shows evidence of dynamic condensation and the absence of a relaxation bottleneck. The polariton relaxation dynamics were investigated by time-resolved measurements, which showed a progressive decrease in the polariton relaxation time with increase in polariton density.


Asunto(s)
Nanotubos/química , Nanotubos/ultraestructura , Resonancia por Plasmón de Superficie/métodos , Óxido de Zinc/química , Conductividad Eléctrica , Ensayo de Materiales , Miniaturización , Temperatura
11.
Nano Lett ; 11(4): 1434-8, 2011 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-21366223

RESUMEN

We have measured the Auger recombination coefficients in defect-free InGaN nanowires (NW) and InGaN/GaN dot-in-nanowire (DNW) samples grown on (001) silicon by plasma-assisted molecular beam epitaxy. The nanowires have a density of ∼1 × 10(11) cm(-2) and exhibit photoluminescence emission peak at λ ∼ 500 nm. The Auger coefficients as a function of excitation power have been derived from excitation dependent and time-resolved photoluminescence measurements over a wide range of optical excitation power density. The values of C(0), defined as the Auger coefficient at low excitation, are 6.1 × 10(-32) and 4.1 × 10(-33) cm(6)·s(-1) in the NW and DNW samples, respectively, which are in reasonably good agreement with theoretical predictions for InGaN alloy semiconductors. Light-emitting diodes made with the NW and DNW samples exhibit no efficiency droop up to an injection current density of 400 A/cm(2).


Asunto(s)
Iluminación/instrumentación , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nitrógeno/química , Semiconductores , Diseño de Equipo , Análisis de Falla de Equipo
12.
Nano Lett ; 11(12): 5396-400, 2011 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-22049993

RESUMEN

The spin relaxation time of photoinduced conduction electrons has been measured in InGaN quantum disks in GaN nanowires as a function of temperature and In composition in the disks. The relaxation times are of the order of ∼100 ps at 300 K and are weakly dependent on temperature. Theoretical considerations show that the Elliott-Yafet scattering mechanism is essentially absent in these materials and the results are interpreted in terms of the D'yakonov-Perel' relaxation mechanism in the presence of Rashba spin-orbit coupling of the wurtzite structure. The calculated spin relaxation times are in good agreement with the measured values.

13.
Nat Commun ; 13(1): 5223, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064944

RESUMEN

As machine vision technology generates large amounts of data from sensors, it requires efficient computational systems for visual cognitive processing. Recently, in-sensor computing systems have emerged as a potential solution for reducing unnecessary data transfer and realizing fast and energy-efficient visual cognitive processing. However, they still lack the capability to process stored images directly within the sensor. Here, we demonstrate a heterogeneously integrated 1-photodiode and 1 memristor (1P-1R) crossbar for in-sensor visual cognitive processing, emulating a mammalian image encoding process to extract features from the input images. Unlike other neuromorphic vision processes, the trained weight values are applied as an input voltage to the image-saved crossbar array instead of storing the weight value in the memristors, realizing the in-sensor computing paradigm. We believe the heterogeneously integrated in-sensor computing platform provides an advanced architecture for real-time and data-intensive machine-vision applications via bio-stimulus domain reduction.


Asunto(s)
Neuronas , Visión Ocular , Animales , Cognición , Mamíferos , Neuronas/fisiología , Percepción Visual
14.
iScience ; 25(5): 104194, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35479416

RESUMEN

Sensitive detection of near-infrared (NIR) light is applicable to variety of optical, chemical, and biomedical sensors. Of these diverse applications, NIR photodetectors have been used as a key component for photoplethysmography (PPG) sensors. In particular, because NIR organic photodetectors (OPDs) enable fabrication of stretchable and skin-conformal PPG sensors, they are attaining tremendously increasing interest in both academia and industry. Herein, we report strain-durable and highly sensitive NIR OPDs using an organic bulk heterojunction (BHJ) layer. For effective suppression of dark current, we employed BHJ combination consisting of PTB7-Th:Y6 which forms high energy barrier against transport-injected holes. The optimized OPDs exhibited high specific detectivity up to 2.2 × 1012 Jones at 800 nm. By constructing the devices on the parylene substrates, we successfully demonstrated stretchable NIR OPDs and high-performance skin-conformal PPG sensors.

15.
Mater Horiz ; 9(4): 1207-1215, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35257128

RESUMEN

Strain engineering has been recognized as a critical strategy in modulating the optoelectronic properties of perovskite halide materials. Here, we demonstrate a self-powered, flexible photodetector based on CsPbBr3 thin films with controllable compressive or tensile strain of up to ±0.81%, which was produced in situ via a sequential two-step deposition on bent polymer substrates. The best photoresponsivity of ∼121.5 mA W-1 with a photocurrent of 5.15 µA was achieved at zero bias under a power intensity of 0.47 mW cm-2 for the maximum tensile strain of +0.81%, which corresponds to a ∼100.2% increase relative to that of the unstrained case. The in situ tensile strain adjusted the band alignments, making them favorable for enhanced charge transport and thus a higher photoresponse. The structural origin of this superlative balanced photodetection performance was systematically revealed to be associated with the distortion of coupled PbBr6 octahedra and the atomic displacement within the octahedron.

16.
Sci Rep ; 12(1): 4301, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35277566

RESUMEN

Intersubband (intraband) transitions allow absorption of photons in the infrared spectral regime, which is essential for IR-photodetector and optical communication applications. Among various technologies, nanodisks embedded in nanowires offer a unique opportunity to be utilized in intraband devices due to the ease of tuning the fundamental parameters such as strain distribution, band energy, and confinement of the active region. Here, we show the transverse electric polarized intraband absorption using InGaN/GaN nanodisks cladded by AlGaN. Fourier transform infrared reflection (FTIR) measurement confirms absorption of normal incident in-plane transverse electric polarized photons in the mid-IR regime (wavelength of ~ 15 µm) at room temperature. The momentum matrix of the nanodisk energy states indicates electron transition from the ground state s into the px or py orbital-like excited states. Furthermore, the absorption characteristics depending on the indium composition and nanowire diameter exhibits tunability of the intraband absorption spectra within the nanodisks. We believe nanodisks embedded nanowires is a promising technology for achieving tunable detection of photons in the IR spectrum.

17.
Opt Express ; 19(27): 26394-8, 2011 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-22274223

RESUMEN

Coherent and directional emission at 1.55 µm from a PbSe colloidal quantum dot electroluminescent device on silicon is demonstrated. The quantum dots are sandwiched between a metallic mirror and a distributed Bragg reflector and are chemically treated in order to increase the electronic coupling. Electrons and holes are injected through ZnO nanocrystals and indium tin oxide, respectively. The measured electroluminescence exhibits a minimum linewidth of ~3.1 nm corresponding to a cavity quality factor of ~500 at a low injection current density of 3 A/cm2, and highly directional emission characteristics.


Asunto(s)
Coloides/química , Plomo/química , Mediciones Luminiscentes/instrumentación , Dispositivos Ópticos , Puntos Cuánticos , Refractometría/instrumentación , Compuestos de Selenio/química , Silicio/química
18.
Phys Rev Lett ; 107(6): 066405, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21902349

RESUMEN

We report ultralow threshold polariton lasing from a single GaN nanowire strongly coupled to a large-area dielectric microcavity. The threshold carrier density is 3 orders of magnitude lower than that of photon lasing observed in the same device, and 2 orders of magnitude lower than any existing room-temperature polariton devices. Spectral, polarization, and coherence properties of the emission were measured to confirm polariton lasing.

19.
Nanomaterials (Basel) ; 11(2)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669289

RESUMEN

Interface traps between a gate insulator and beta-gallium oxide (ß-Ga2O3) channel are extensively studied because of the interface trap charge-induced instability and hysteresis. In this work, their effects on mobility degradation at low temperature and hysteresis at high temperature are investigated by characterizing electrical properties of the device in a temperature range of 20-300 K. As acceptor-like traps at the interface are frozen below 230 K, the hysteresis becomes negligible but simultaneously the channel mobility significantly degrades because the inactive neutral traps allow additional collisions of electrons at the interface. This is confirmed by the fact that a gate bias adversely affects the channel mobility. An activation energy of such traps is estimated as 170 meV. The activated trap charges' trapping and de-trapping processes in response to the gate pulse bias reveal that the time constants for the slow and fast processes decrease due to additionally activated traps as the temperature increases.

20.
Micromachines (Basel) ; 12(12)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34945290

RESUMEN

AlGaN/GaN metal-oxide semiconductor high electron mobility transistors (MOS-HEMTs) with undoped ferroelectric HfO2 have been investigated. Annealing is often a critical step for improving the quality of as-deposited amorphous gate oxides. Thermal treatment of HfO2 gate dielectric, however, is known to degrade the oxide/nitride interface due to the formation of Ga-containing oxide. In this work, the undoped HfO2 gate dielectric was spike-annealed at 600 °C after the film was deposited by atomic layer deposition to improve the ferroelectricity without degrading the interface. As a result, the subthreshold slope of AlGaN/GaN MOS-HEMTs close to 60 mV/dec and on/off ratio>109 were achieved. These results suggest optimizing the HfO2/nitride interface can be a critical step towards a low-loss high-power switching device.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA