Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Compr Rev Food Sci Food Saf ; 23(3): e13365, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38767863

RESUMEN

Filamentous fungal mycoproteins have gained increasing attention as sustainable alternatives to animal and plant-based proteins. This comprehensive review summarizes the nutritional characteristics, toxicological aspects, and health-promoting effects of mycoproteins, focusing on those derived from filamentous fungi, notably Fusarium venenatum. Mycoproteins are characterized by their high protein content, and they have a superior essential amino acid profile compared to soybeans indicating excellent protein quality and benefits for human nutrition. Additionally, mycoproteins offer enhanced digestibility, further highlighting their suitability as a protein source. Furthermore, mycoproteins are rich in dietary fibers, which have been associated with health benefits, including protection against metabolic diseases. Moreover, their fatty acids profile, with significant proportions of polyunsaturated fatty acids and absence of cholesterol, distinguishes them from animal-derived proteins. In conclusion, the future of mycoproteins as a health-promoting protein alternative and the development of functional foods relies on several key aspects. These include improving the acceptance of mycoproteins, conducting further research into their mechanisms of action, addressing consumer preferences and perceptions, and ensuring safety and regulatory compliance. To fully unlock the potential of mycoproteins and meet the evolving needs of a health-conscious society, continuous interdisciplinary research, collaboration among stakeholders, and proactive engagement with consumers will be vital.


Asunto(s)
Fusarium , Fusarium/química , Humanos , Proteínas Fúngicas/química , Animales , Valor Nutritivo , Alimentos Funcionales , Proteínas en la Dieta , Fibras de la Dieta
2.
Biosci Biotechnol Biochem ; 82(11): 1964-1972, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30032716

RESUMEN

This study was designed to select potent cholesterol-lowering probiotic strains on HepG2 cell and investigate the effect of selected strain, Lactobacillus plantarum LRCC 5273 and LRCC 5279 in hypercholesterolemic mice. In the results, LP5273 group showed significantly reduced total and LDL cholesterol compared to HCD group. In addition to significantly up-regulated hepatic mRNA expression of LXR-α and CYP7A1, intestinal LXR-α and ABCG5 were significantly up-regulated in LP5273 group. With activation of hepatic and intestinal LXR-α and its target genes, fecal cholesterol and bile acid excretion were increased in LP5273 fed mice. These results suggest that LP5273 ameliorates hypercholesterolemia in mice through the activation of hepatic and intestinal LXR-α, resulting in enhancement of fecal cholesterol and bile acids excretion in the small intestine. The results of present study suggest mechanistic evidences for hypocholesterolemic effects of L. plantarum spp., and may contribute to future researches for prevention of hypercholesterolemia and cardiovascular disease.


Asunto(s)
Colesterol en la Dieta/administración & dosificación , Alimentos Fermentados/microbiología , Hipercolesterolemia/prevención & control , Lactobacillus plantarum , Probióticos , Animales , Ácidos y Sales Biliares/metabolismo , Peso Corporal , Colesterol/análisis , Colesterol/sangre , Heces/química , Heces/microbiología , Conducta Alimentaria , Femenino , Células Hep G2 , Humanos , Hipercolesterolemia/sangre , Hipercolesterolemia/etiología , Mucosa Intestinal/metabolismo , Hígado/metabolismo , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Ratones Endogámicos C57BL , Tamaño de los Órganos , ARN Mensajero/genética , Transcripción Genética , Triglicéridos/metabolismo
3.
Asian-Australas J Anim Sci ; 29(3): 365-71, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26950867

RESUMEN

This study was aimed to evaluate the stability of conjugated linoleic acids (CLAs) by nano-encapsulation against in vitro ruminal biohydrogenation by microbial enzymatic conversion. CLAs (free fatty acid form of CLA [CLA-FFA], nano-encapsulated CLA-FFA, triglyceride form of CLA [CLA-TG], and nano-encapsulated CLA-TG) were used in the in vitro fermentation experiments. When Butyrivibrio fibrisolvens (B. fibrisolvens) was incubated with CLA-FFAs, the concentrations of cis-9, trans-11 CLA and vaccenic acid (VA) slightly was decreased and increased by nano-encapsulation, respectively. When B. fibrisolvens was incubated with CLA-TG, the concentrations of cis-9, trans-11 CLA and VA decreased, but these were increased when B. fibrisolvens was incubated with nano-encapsulated CLA-TG. The nano-encapsulation was more effective against the in vitro biohydrogenation activity of B.fibrisolvens incubated with CLA-FFA than with CLA-TG. In the in vitro ruminal incubation test, the total gas production and concentration of total volatile fatty acids incubated with nano-encapsulated CLA-FFA and CLA-TG were increased significantly after 24 h incubation (p<0.05). Nano-encapsulated CLA-FFA might, thus, improve the ruminal fermentation characteristics without adverse effects on the incubation process. In addition, nano-encapsulated CLA-FFA increased the population of Fibrobacter succinogenes and decreased the population of B. fibrisolvens population. These results indicate that nano-encapsulation could be applied to enhance CLA levels in ruminants by increasing the stability of CLA without causing adverse effects on ruminal fermentation.

4.
Food Sci Biotechnol ; 33(5): 1113-1122, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38440677

RESUMEN

This study aimed to evaluate the properties of amylose-lipid complexes in rice and wheat flours utilizing pullulanase as a debranching enzyme. Rice and flour were both treated with pullulanase before being combined with free fatty acids to form compounds denoted as RPF (rice-pullulanase-fatty acid) and FPF (flour-pullulanase-fatty acid), respectively. Our results showed that RPF and FPF had higher complex index and lower hydrolysis values than enzyme-untreated amylose-lipid complexes. Furthermore, RPF and FPF demonstrated lower swelling power and higher water solubility values, indicating changes in the physical properties of the starches. In vivo studies showed that RPF and FPF caused a smaller increase in blood glucose levels than untreated rice and flour, highlighting their potential use as functional food ingredients. These findings provide valuable information for the development of novel rice-and wheat-based foods with improved nutritional and physiological properties. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01411-0.

5.
Nutrients ; 15(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36839308

RESUMEN

Coumestrol, a phytoestrogen compound found in various plants, has been shown to act as a potent estrogen receptor (ER) agonist, with a higher binding affinity for ERß than for ERα. However, there is currently limited information regarding its beneficial effects in postmenopausal disorders and its ER-mediated mechanisms. Herein, we investigated the effects of coumestrol (subcutaneous or oral treatment) on metabolic dysfunction in ovariectomized (OVX) mice fed a high-fat diet, in comparison with the effects of 17ß-estradiol (E2) replacement. Coumestrol was administered daily at a dose of 5 mg/kg for 10 weeks. Coumestrol treatment through the subcutaneous route stimulated uterine growth in OVX mice at a level lower than that of E2. E2 and coumestrol prevented body fat accumulation, adipocyte hypertrophy, and hepatic steatosis, and enhanced voluntary physical activity. Coumestrol showed estrogen-mimetic effects in the regulation of the protein expressions involved in browning of white fat and insulin signaling, including increased hepatic expression of fibroblast growth factor 21. Importantly, the metabolic effects of coumestrol (oral administration at 10 mg/kg for 7 weeks) were mostly abolished following co-treatment with an ERß-selective antagonist but not with an ERα-selective antagonist, indicating that the metabolic actions of coumestrol in OVX mice are primarily mediated by ERß. These findings provide important insights into the beneficial effects of coumestrol as a phytoestrogen supplement for the prevention and treatment of postmenopausal symptoms.


Asunto(s)
Cumestrol , Receptor alfa de Estrógeno , Animales , Femenino , Ratones , Cumestrol/farmacología , Estradiol/farmacología , Receptor beta de Estrógeno , Ovariectomía , Fitoestrógenos , Receptores de Estrógenos
6.
Artículo en Inglés | MEDLINE | ID: mdl-35270465

RESUMEN

The purpose of this study is to determine the difference in sleep-related factors and metabolites between normal sleep (NS) and sleep deficiency (SD) and to analyze the variations in metabolites according to the intensity of aerobic exercise under SD conditions. This study was conducted on 32 healthy male university students. Participants experienced both NS (8 h of sleep per night for 3 consecutive days) and SD (4 h of sleep per night for 3 consecutive days). After the SD period, the participants underwent treatment for 30 min by the assigned group [sleep supplement after SD (SSD), low-intensity aerobic exercise after SD (LES), moderate-intensity aerobic exercise after SD (MES), high-intensity aerobic exercise after SD (HES)]. For analysis, sleep-related factors were measured, and metabolites were analyzed by untargeted metabolite analysis using gas chromatography-time-of-flight mass spectrometry. As a result, SD showed that total sleep time (TST), duration of rapid eye movement (REM), duration of light sleep, and duration of deep sleep were significantly decreased compared to NS, whereas the Pittsburgh sleep quality index (PSQI), Epworth sleepiness scale (ESS), and visual analogue scale (VAS) were significantly increased compared to NS. The difference in metabolites between NS and SD showed that there were significant changes in the seven metabolites. There were 18 metabolites that changed according to the treatment groups in SD conditions. In summary, SD can exacerbate sleep quality, induce daytime sleepiness, increase fatigue, and increase metabolites that cause insulin resistance. Aerobic exercise under SD conditions can reduce metabolites that induce insulin resistance and increase the metabolites that help relieve depression caused by SD. However, HES has a negative effect, which increases fatigue, whereas LES has no negative effect. Thus, this study suggests that LES is the most appropriate exercise method under SD conditions.


Asunto(s)
Resistencia a la Insulina , Trastornos del Sueño-Vigilia , Ejercicio Físico , Fatiga , Humanos , Masculino , Polisomnografía , Sueño
7.
Nutrients ; 14(11)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35684069

RESUMEN

Citrus junos Tanaka (CJ)-related products are well-accepted by consumers worldwide; thus, they generate huge amounts of waste (peel, pulp, and seed) through CJ processing. Although some CJ by-products (CJBs) are recycled, their use is limited owing to the limited understanding of their nutritional and economic value. The exposure to particulate matter (PM) increases the risk of respiratory diseases. In this study, we investigated the ameliorative effects of CJB extracts (100, 200 mg/kg/day, 7 days) on PM10-induced (10 mg/kg, intranasal, 6 h) lung damage in BALB/c mice. Cell type-specific signaling pathways are examined using the A549 (PM10, 200 µg/mL, 6 h) and RAW264.7 (LPS, 100 ng/mL, 6 h) cell lines. The CJB extracts significantly attenuated PM10-induced pulmonary damage and inflammatory cell infiltration in a mouse model. The essential protein markers in inflammatory signaling pathways, such as AKT, ERK, JNK, and NF-κB for PM10-induced phosphorylation, were dramatically reduced by CJB extract treatment in both the mouse and cell models. Furthermore, the CJB extracts reduced the production of reactive oxygen species and nitric oxide in a dose-dependent manner in the cells. Comprehensively, the CJB extracts were effective in reducing PM10-induced lung injuries by suppressing pulmonary inflammation, potentially due to their anti-inflammatory and antioxidant properties.


Asunto(s)
Citrus , Animales , Citrus/metabolismo , Pulmón/metabolismo , Ratones , FN-kappa B/metabolismo , Material Particulado/toxicidad , Extractos Vegetales/farmacología , Agua
8.
PLoS One ; 17(4): e0265275, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35363794

RESUMEN

We evaluated the performance of cardiac arrest-specific prognostication scores developed for outcome prediction in the early hours after out-of-hospital cardiac arrest (OHCA) in predicting long-term outcomes using independent data. The following scores were calculated for 1,163 OHCA patients who were treated with targeted temperature management (TTM) at 21 hospitals in South Korea: OHCA, cardiac arrest hospital prognosis (CAHP), C-GRApH (named on the basis of its variables), TTM risk, 5-R, NULL-PLEASE (named on the basis of its variables), Serbian quality of life long-term (SR-QOLl), cardiac arrest survival, revised post-cardiac arrest syndrome for therapeutic hypothermia (rCAST), Polish hypothermia registry (PHR) risk, and PROgnostication using LOGistic regression model for Unselected adult cardiac arrest patients in the Early stages (PROLOGUE) scores and prediction score by Aschauer et al. Their accuracies in predicting poor outcome at 6 months after OHCA were determined using the area under the receiver operating characteristic curve (AUC) and calibration belt. In the complete-case analyses, the PROLOGUE score showed the highest AUC (0.923; 95% confidence interval [CI], 0.904-0.941), whereas the SR-QOLl score had the lowest AUC (0.749; 95% CI, 0.711-0.786). The discrimination performances were similar in the analyses after multiple imputation. The PROLOGUE, TTM risk, CAHP, NULL-PLEASE, 5-R, and cardiac arrest survival scores were well calibrated. The rCAST and PHR risk scores showed acceptable overall calibration, although they showed miscalibration under the 80% CI level at extreme prediction values. The OHCA score, C-GRApH score, prediction score by Aschauer et al., and SR-QOLl score showed significant miscalibration in both complete-case (P = 0.026, 0.013, 0.005, and < 0.001, respectively) and multiple-imputation analyses (P = 0.007, 0.018, < 0.001, and < 0.001, respectively). In conclusion, the discrimination performances of the prognostication scores were all acceptable, but some showed significant miscalibration.


Asunto(s)
Reanimación Cardiopulmonar , Hipotermia Inducida , Hipotermia , Paro Cardíaco Extrahospitalario , Adulto , Humanos , Paro Cardíaco Extrahospitalario/diagnóstico , Paro Cardíaco Extrahospitalario/terapia , Pronóstico , Calidad de Vida
9.
Nutrients ; 14(5)2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35268078

RESUMEN

Particulate matter (PM) 10 refers to fine dust with a diameter of less than 10 µm and induces apoptosis and inflammatory responses through oxidative stress. Citrus junos Tanaka is a citrus fruit and contains bioactive flavonoids including naringin. In the present study, we aimed to identify the preventive effect of Citrus junos Tanaka peel extract (CPE) against PM10-induced lung injury. As a proof of concept, NCI-H460 cells were treated with CPE (800 µg/mL, 12 h) in conjunction with PM10 to examine intracellular antioxidative capacity in the pulmonary system. In an in vivo model, male BALB/c mice (n = 8/group) were randomly assigned into five groups: NEG (saline-treated), POS (PM10 only), NAR (PM10 + naringin, 100 mg/kg), CPL (PM10 + CPE low, 100 mg/kg), and CPH (PM10 + CPE high, 400 mg/kg). Intervention groups received dietary supplementations for 7 days followed by PM10 exposure (100 mg/kg, intranasal instillation). Compared to the NEG, the CPE decreased to 22% of the ROS generation and significantly increased cell viability in vitro. The histological assessments confirmed that pulmonary damages were alleviated in the PM10 + CPL group compared to the POS. Pro-inflammatory cytokines and NF-κB/apoptosis signaling-related markers were decreased in the PM10 + CPL group compared to the POS. These results indicated that CPE showed promising efficacy in preventing pulmonary injuries in vivo. Such protection can be explained by the anti-oxidative capacity of CPE, likely due to its bioactives, including naringin (7.74 mg/g CPE). Follow-up human intervention, as well as population-level studies, will further shed light on the preventive efficacy of CPE against pulmonary damage in humans.


Asunto(s)
Citrus , Flavanonas , Animales , Masculino , Ratones , Polvo , Flavanonas/farmacología , Ratones Endogámicos BALB C
10.
Microorganisms ; 10(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35056525

RESUMEN

Ammonia from livestock manure reacts with chemical components discharged from various emission sources to produce airborne particulate matter. This study aimed to investigate a novel effective microbial agent to suppress ammonia gas emitted from manure. Both isolated L12I and 12III strains, identified as Pediococcus acidilactici (PA), were selected for their superior activity in assays performed with the evaluation criteria such as acid production, ammonia decomposition, and urease inhibition, which are key factors influencing ammonia excretion. The survivability of PA strains was confirmed by an increase in DNA abundance in the manure. PA strains lowered the pH of manure and suppressed the growth of hyper-ammonia-producing bacteria (HAB) possessing urease activity. The L12I and 12III treatment groups showed 23.58% and 38.00% emission reductions, respectively. Especially, the 12III strain was proven to be the more effective strain for reducing ammonia gas emission, with the best ability to reduce pH and inhibit HAB. The strains could have an additive effect in improving the manure quality as a nitrogen fertilizer by preserving the total nitrogen and urea content. These results suggest that PA strains can be used as unprecedented microbial agents to improve manure-derived environmental pollution and improve fertilizer quality.

11.
J Med Food ; 24(6): 577-585, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34161165

RESUMEN

Fatigue is a common phenomenon usually observed in healthy, as well as in nonhealthy, individuals that affects their performance and quality of life. Efficient supplementation to relieve fatigue is of significant importance. This study was designed to investigate the efficacy of three prescreened natural resources (Cervus elaphus L. [CEL], Angelica gigas Nakai [AGN], and Astragalus membranaceus Bunge [AMB]) against fatigue symptoms induced by heavy exercise. Effects on muscle fatigue and endurance capacity during exercise were investigated in C2C12 myoblasts and exercised mice. A combination of CEL, AGN, and AMB (CEL:AGN:AMB, 1:2:1) treatment in myoblasts reduced intracellular reactive oxygen species levels induced by hydrogen peroxide by ∼20 times (P < .001). The optimal mixture extract combination was determined as CEL:AGN:AMB, 1:2:1 (CAA), which was recombined by applying the extraction yield of individual substance for in vivo study. Compared to the exercise control (EC) group, the serum lactate dehydrogenase level decreased by ∼40% due to CAA administration. The proliferator-activated receptor gamma coactivator 1-alpha protein expression increased significantly (P < .05) after CAA administration compared to that observed in the normal control group. In parallel, CAA treatment significantly (P < .05) enhanced the maximum running time compared to the EC group. Overall, combinatorial administration exhibited greater efficacy compared to each individual treatment, indicating that CAA could be used as an efficient ergogenic and antifatigue supplement.


Asunto(s)
Angelica , Animales , Astragalus propinquus , Benzopiranos , Butiratos , Ratones , Extractos Vegetales , Calidad de Vida
12.
J Med Food ; 24(5): 441-451, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34009022

RESUMEN

Chestnut inner shell (CIS) is rich in phenols and flavonoids such as gallic acid and ellagic acid, which are known to exhibit effective antioxidant and anti-obesity properties. Fermentation using lactic acid bacteria can enhance the physiological activity by increasing the contents of such functional ingredients. In this study, we evaluated the anti-obesity effects of a CIS extract subjected to a fermentation process (fermented CIS [FCIS]). Treatment with CIS and FCIS extracts (125, 250, and 500 µg/mL) increased cell viability and did not induce apoptosis, indicating no toxicity. The extract suppressed the gene expression of adipogenic factors, peroxisome proliferation-activated receptor gamma, CCAAT/enhancer binding protein (C/EBP) alpha, and C/EBP beta (by 7.75% and 67.59%, 21.41% and 66.27% in 500 µg/mL, respectively), and consequently suppressed the expression of downstream lipogenic factors such as fatty acid synthase, stearoyl CoA desaturase-1, citrate synthase, and ATP citrate lyase. The expression of factors involved in fat catabolism and ß-oxidation increased in a dose-dependent manner, thereby preventing fat accumulation. This observation was consistent with the significant decrease in the staining intensity for lipid droplets, which indicated that lipid accumulation was decreased by 15.46% and 29.44% in 3T3L-1 and 27.01% and 46.68% in C3H10T1/2. Together, these results demonstrate the higher anti-obesity effects of FCIS extract than that of CIS extract, indicating the potential applicability of FCIS as an effective natural raw material to curb obesity.


Asunto(s)
Adipocitos , Fármacos Antiobesidad , Células 3T3-L1 , Adipocitos/metabolismo , Adipogénesis , Animales , Fármacos Antiobesidad/farmacología , Diferenciación Celular , Fermentación , Ratones , Obesidad/tratamiento farmacológico , PPAR gamma/metabolismo , Extractos Vegetales/farmacología
13.
J Med Food ; 23(11): 1183-1191, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33170759

RESUMEN

Sword bean has been known as a traditional medicinal plant to treat cancer, sinus infection, and suppurative disease. It also possesses hypertension-relieving, antioxidation, and antibacterial effects. However, studies on the efficacy of sword bean are limited to mature beans. Few studies have focused on immature sword bean pod (ISBP). Therefore, this study aimed to investigate the anti-inflammatory effect of ISBP in RAW264.7 cells stimulated with lipopolysaccharide (LPS). After LPS-induced RAW264.7 cells were treated with ISBP at concentrations (0.5, 1, 2, and 5 mg/mL), levels of nitrite oxide (NO) and prostaglandin E2 (PGE2) production, protein, and mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), inflammatory cytokine secretion level, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activity were determined. Under inflammatory conditions induced by LPS, ISBP reduced levels of inflammatory mediators NO and PGE2 by 60% and 23%, respectively. It also decreased protein and mRNA expression levels of iNOS and COX-2 known to synthesize inflammatory mediators. Inflammatory cytokines, interleukin (IL)-6, and IL-1ß, levels were decreased, while interferon gamma level was increased by ISBP based on enzyme-linked immunosorbent assay (ELISA) and real time-polymerase chain reaction results. Finally, ISBP showed the ability to inhibit NF-κB activity. In conclusion, ISBP can alleviate inflammation by controlling inflammation-related substances, and may have efficacy as a healthful functional food and natural anti-inflammatory drug.


Asunto(s)
Antiinflamatorios/farmacología , Canavalia/química , Macrófagos/efectos de los fármacos , Preparaciones de Plantas/farmacología , Animales , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Suplementos Dietéticos , Dinoprostona/metabolismo , Lipopolisacáridos , Macrófagos/metabolismo , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Células RAW 264.7
14.
J Microbiol Biotechnol ; 30(1): 54-61, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31546305

RESUMEN

Saccharomyces boulardii is the only probiotic yeast with US Food and Drug Administration approval. It is routinely used to prevent or treat acute diarrhea and other gastrointestinal disorders, including the antibiotic-associated diarrhea caused by Clostridium difficile infections. The formation of reactive oxygen species (ROS), specifically H2O2 during normal aerobic metabolism, contributes to programmed cell death and represents a risk to the viability of the probiotic microbe. Moreover, a loss of viability reduces the efficacy of the probiotic treatment. Therefore, inhibiting the accumulation of ROS in the oxidant environment could improve the viability of the probiotic yeast and lead to more efficacious treatment. Here, we provide evidence that supplementation with a non-reducing disaccharide, namely trehalose, enhanced the viability of S. boulardii exposed to an oxidative environment by preventing metacaspase YCA1-mediated programmed cell death through inhibition of intracellular ROS production. Our results suggest that supplementation with S. boulardii together with trehalose could increase the viability of the organism, and thus improve its effectiveness as a probiotic and as a treatment for acute diarrhea and other gastrointestinal disorders.


Asunto(s)
Viabilidad Microbiana/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Probióticos , Saccharomyces boulardii/efectos de los fármacos , Trehalosa/farmacología
15.
Antioxidants (Basel) ; 9(12)2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291640

RESUMEN

Various stresses derived from both internal and external oxidative environments lead to the excessive production of reactive oxygen species (ROS) causing progressive intracellular oxidative damage and ultimately cell death. The objective of this study was to evaluate the protective effects of Citrus junos Tanaka peel extract (CE) against oxidative-stress induced the apoptosis of lung cells and the associated mechanisms of action using in vitro and in vivo models. The protective effect of CE was evaluated in vitro in NCI-H460 human lung cells exposed to pro-oxidant H2O2. The preventive effect of CE (200 mg/kg/day, 10 days) against pulmonary injuries following acrolein inhalation (10 ppm for 12 h) was investigated using an in vivo mouse model. Herein, we demonstrated the inhibitory effect of CE against the oxidative stress-induced apoptosis of lung cells under a highly oxidative environment. The function of CE is linked with its ability to suppress ROS-dependent, p53-mediated apoptotic signaling. Furthermore, we evaluated the protective role of CE against apoptotic pulmonary injuries associated with the inhalation of acrolein, a ubiquitous and highly oxidizing environmental respiratory pollutant, through the attenuation of oxidative stress. The results indicated that CE exhibits a protective effect against the oxidative stress-induced apoptosis of lung cells in both in vitro and in vivo models.

16.
J Med Food ; 22(9): 944-951, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31339799

RESUMEN

We developed low temperature-aged garlic (LTAG) to remove its unique and spicy flavor and evaluated the anti-fatigue properties of LTAG against exercise-induced fatigue in mice. In the results, the treadmill running time to exhaustion in the mice fed LTAG was prolonged compared with the control. There was significant difference in blood parameters of glucose, lactate, lactate dehydrogenase (LDH), and free fatty acid (FFA) concentration between the LTAG-fed mice and the control. In addition, LTAG effectively increased the content of glycogen and creatine kinase and the activity of antioxidant enzymes in the muscle. The mechanism underlying the anti-fatigue activity of LTAG is hypothesized to involve increase in postexercise tissue glycogen accumulation to improve the aerobic and anaerobic exercise capacity. LTAG may have an ergogenic effect on endurance exercise while decreasing the levels of FFA, LDH, and lactate, which are associated with the anti-fatigue effect. Thus, LTAG has potential as a pharmacological anti-fatigue agent.


Asunto(s)
Fatiga/tratamiento farmacológico , Ajo/química , Resistencia Física/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Animales , Frío , Creatina Quinasa/metabolismo , Suplementos Dietéticos/análisis , Ejercicio Físico , Fatiga/sangre , Fatiga/fisiopatología , Ácidos Grasos no Esterificados/sangre , Glucógeno/metabolismo , Humanos , L-Lactato Deshidrogenasa/sangre , Ácido Láctico/sangre , Masculino , Ratones , Ratones Endogámicos ICR , Músculo Esquelético/metabolismo
17.
J Ginseng Res ; 43(2): 179-185, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30976158

RESUMEN

BACKGROUND: Oxidative stress induces the production of reactive oxygen species (ROS), which play important causative roles in various pathological conditions. Black ginseng (BG), a type of steam-processed ginseng, has drawn significant attention due to its biological activity, and is more potent than white ginseng (WG) or red ginseng (RG). METHODS: We evaluated the protective effects of BG extract (BGE) against oxidative stress-induced cellular damage, in comparison with WG extract (WGE) and RG extract (RGE) in a cell culture model. Ethanolic extracts of WG, RG, and BG were used to evaluate ginsenoside profiles, total polyphenols, flavonoid contents, and antioxidant activity. Using AML-12 cells treated with H2O2, the protective effects of WGE, RGE, and BGE on cellular redox status, DNA, protein, lipid damage, and apoptosis levels were investigated. RESULTS: BGE exhibited significantly enhanced antioxidant potential, as well as total flavonoid and polyphenol contents. ATP levels were significantly higher in BGE-treated cells than in control; ROS generation and glutathione disulfide levels were lower but glutathione (GSH) and NADPH levels were higher in BGE-treated cells than in other groups. Pretreatment with BGE inhibited apoptosis and therefore protected cells from oxidative stress-induced cellular damage, probably through ROS scavenging. CONCLUSION: Collectively, our results demonstrate that BGE protects AML-12 cells from oxidative stress-induced cellular damages more effectively than WGE or RGE, through ROS scavenging, maintenance of redox status, and activation of the antioxidant defense system.

18.
Prev Nutr Food Sci ; 24(3): 357-362, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31608263

RESUMEN

In comparison with raw garlic, aged black garlic has been shown to display multiple pharmacological activities. We recently reported that pretreatment of pectinase cocktail with high hydrostatic pressure (HHP) before the process of aging garlic juice improves its antidiabetic activity and increases S-allylcysteine (SAC) content. Thus, this study was designed to investigate the influence of pectinase cocktail with HHP on the quality of aged black garlic juice formation and to identify the optimal manufacturing conditions. In the pretreatment step, garlic juice is heated at 55°C for 24 h. The contents of SAC and total polyphenols were increased with treatment of pectinase cocktail; this increase was greater under HHP processing. In contrast, the total flavonoid content was decreased in all pretreatment conditions. Garlic juice pretreated with pectinase cocktail and HHP had a significantly higher content of SAC in the early phase of aging than raw garlic juice, and the SAC was increased over time in both treatment groups. The total polyphenol content of garlic juice was significantly higher in the pretreatment group during the aging period, and the antioxidant activity of garlic juice showed a positive correlation with polyphenol content. Interestingly, HHP increased the enzymatic activity of the pectinase cocktail.

19.
Nutrients ; 11(4)2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30995745

RESUMEN

Accumulation of reactive oxygen species (ROS) in response to excess alcohol exposure is a major cause of gut barrier disruption and lipopolysaccharide (LPS)-induced hepatic inflammation, as well as liver steatosis and apoptosis. This study was designed to investigate protective effects of the cricket Gryllus bimaculatus, an edible insect recognized by the Korea Food and Drug Administration, against acute alcoholic liver damage in mice. Administration of G. bimaculatus extracts (GBE) attenuated alcohol-induced steatosis and apoptotic responses in the liver and intestinal permeability to bacterial endotoxin. These protective effects were associated with suppression of ROS-mediated oxidative stress in both the liver and small intestine. Furthermore, in vivo and in vitro studies revealed that GBE inhibits LPS-induced Kupffer cell activation and subsequent inflammatory signaling. Importantly, the protective effects of GBE were more potent than those of silymarin, a known therapeutic agent for alcoholic liver diseases.


Asunto(s)
Productos Biológicos/uso terapéutico , Gryllidae , Inflamación/prevención & control , Enfermedades Intestinales/prevención & control , Intestino Delgado/efectos de los fármacos , Hepatopatías Alcohólicas/prevención & control , Hígado/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Apoptosis , Productos Biológicos/farmacología , Etanol/efectos adversos , Hígado Graso/prevención & control , Conducta Alimentaria , Femenino , Inflamación/metabolismo , Enfermedades Intestinales/patología , Intestino Delgado/patología , Macrófagos del Hígado/efectos de los fármacos , Lipopolisacáridos , Hígado/metabolismo , Hígado/patología , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Permeabilidad , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico
20.
J Microbiol Biotechnol ; 29(4): 665, 2019 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-31048595

RESUMEN

This erratum is being published to correct the author's contribution of above manuscript by Chae et al. that was published in Journal of Microbiology and Biotechnology (2018, 28:11, 1800-1805). The ninth author (Jin Hyup Lee) should be marked as corresponding author (*) with latest author (Young Jun Kim). The correspondence should appear as: *Corresponding authors Young Jun Kim Phone: +82-44-860-1435; Fax: +82-44-860-1586; E-mail: yk46@korea.ac.kr Jin Hyup Lee Phone: +82-44-860-1437 Fax: +82-44-860-1586; E-mail: jinhyuplee@korea.ac.kr.


Asunto(s)
Bifidobacterium animalis/fisiología , Colitis/dietoterapia , Sulfato de Dextran/efectos adversos , Probióticos/uso terapéutico , Animales , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA