RESUMEN
PURPOSE: To investigate the magnitude and time course of pseudorandom ffERG during light adaptation. METHODS: Ten healthy subjects (26 ± 10.1 years) underwent 20 min of dark adaptation, and then the ffERG was evoked by pseudorandom flash sequences (4 ms per flash, 3 cd.s/m2) driven by m-sequences (210-1 stimulus steps) using Veris Science software and a Ganzfeld dome over a constant field of light adaptation (30 cd/m2). The base period of the m-sequence was 50 ms. Each stimulation sequence lasting 40 s was repeated at 0, 5, 10, 15 and 20 min of light adaptation. Relative amplitude and latency (corrected by values found at 0 min) of the three components (N1, P1, and N2) of first-order (K1) and first slice of the second-order (K2.1) kernel at 5 time points were evaluated. An exponential model was fitted to the mean amplitude and latency data as a function of the light adaptation duration to estimate the time course (τ) of the light adaptation for each component. Repeated one-way ANOVA followed by Tukey post-test was applied to the amplitude and latency data, considering significant values of p < 0.05. RESULTS: Regarding the K1 ffERG, N1 K1, P1 K1, and N2 K1 presented an amplitude increase as a function of the light adaptation (N1 K1 τ value = 2.66 min ± 4.2; P1 K1 τ value = 2.69 min ± 2.10; and N2 K1 τ value = 3.49 min ± 2.96). P1 K1 and N2 K1 implicit time changed as a function of the light adaptation duration (P1 K1 τ value = 3.61 min ± 5.2; N2 K1 τ value = 3.25 min ± 4.8). N1 K1 had small implicit time changes during the light adaptation. All the K2,1 components also had nonsignificant changes in amplitude and implicit time during the light adaptation. CONCLUSIONS: Pseudorandom ffERGs showed different mechanisms of adaptation to retinal light. Our results suggest that K1 ffERG is generated by retinal mechanisms with intermediate- to long-term light adaptation, while K2.1 ffERG is generated by retinal mechanism with fast light adaptation course.
Asunto(s)
Adaptación Ocular , Electrorretinografía , Adaptación a la Oscuridad , Voluntarios Sanos , Humanos , Estimulación Luminosa , RetinaRESUMEN
Current theories on the role of serotonin (5-HT) in vertebrate defensive behavior suggest that this monoamine increases anxiety but decreases fear, by acting at different levels of the neuroaxis. This paradoxical, dual role of 5-HT suggests that a serotonergic tone inhibits fear responses, while an acute increase in 5-HT would produce anxiety-like behavior. However, so far no evidence for a serotonergic tone has been found. Using zebrafish alarm responses, we investigate the participation of phasic and tonic 5-HT levels in fear-like behavior, as well as in behavior after stimulation. Conspecific alarm substance (CAS) increased bottom-dwelling and erratic swimming, and animals transferred to a novel environment after CAS exposure (post-exposure behavior) showed increased bottom-dwelling and freezing. Clonazepam blocked CAS effects during and after exposure. Acute fluoxetine dose-dependently decreased fear-like behavior, but increased post-exposure freezing. Metergoline had no effect on fear-like behavior, but blocked the effects of CAS on post-exposure behavior; similar effects were observed with para-chlorophenylalanine. Finally, CAS was shown to decrease the activity of monoamine oxidase in the zebrafish brain after exposure. These results suggest that phasic and tonic serotonin encode an aversive expectation value, switching behavior toward cautious exploration/risk assessment/anxiety when the aversive stimulus is no longer present.
Asunto(s)
Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Miedo/efectos de los fármacos , Miedo/fisiología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Serotonina/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Relación Dosis-Respuesta a Droga , Miedo/psicología , Femenino , Masculino , Natación/fisiología , Pez CebraRESUMEN
Serotonin (5-HT) has been recognized as a neurotransmitter in the vertebrate retina, restricted mainly to amacrine and bipolar cells. It is involved with synaptic processing and possibly as a mitogenic factor. We confirm that chick retina amacrine and bipolar cells are, respectively, heavily and faintly immunolabeled for 5-HT. Amacrine serotonergic cells also co-express tyrosine hydroxylase (TH), a marker of dopaminergic cells in the retina. Previous reports demonstrated that serotonin transport can be modulated by neurotransmitter receptor activation. As 5-HT is diffusely released as a neuromodulator and co-localized with other transmitters, we evaluated if 5-HT uptake or release is modulated by several mediators in the avian retina. The role of different glutamate receptors on serotonin transport and release in vitro and in vivo was also studied. We show that L-glutamate induces an inhibitory effect on [3H]5-HT uptake and this effect was specific to kainate receptor activation. Kainate-induced decrease in [3H]5-HT uptake was blocked by CNQX, an AMPA/kainate receptor antagonist, but not by MK-801, a NMDA receptor antagonist. [3H]5-HT uptake was not observed in the presence of AMPA, thus suggesting that the decrease in serotonin uptake is mediated by kainate. 5-HT (10-50 µM) had no intrinsic activity in raising intracellular Ca2+, but addition of 10 µM 5-HT decreased Ca2+ shifts induced by KCl in retinal neurons. Moreover, kainate decreased the number of bipolar and amacrine cells labeled to serotonin in chick retina. In conclusion, our data suggest a highly selective effect of kainate receptors in the regulation of serotonin functions in the retinal cells.
Asunto(s)
Ácido Kaínico/farmacología , Retina/metabolismo , Serotonina/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Embrión de Pollo , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Neurotransmisores/metabolismo , Receptores de Glutamato/metabolismo , Receptores de Ácido Kaínico/metabolismo , Retina/citología , Retina/efectos de los fármacos , Retina/embriología , Neuronas Retinianas/efectos de los fármacos , Neuronas Retinianas/metabolismo , Tritio/metabolismoRESUMEN
The cellular origins of slow ERG changes during light adaptation following a dark-adapted state are still unclear. To study light adaptation, six healthy, normal trichromats were dark-adapted for 30 min prior to full-field ERG recordings to sinusoidal stimuli that isolate responses of the L- or M-cones or that stimulate luminance and chromatic mechanisms at 12 or 36 Hz. Recordings were performed for 16 min with 2-min intervals after onset of a constant background. Generally, the responses were sine-wave-like, and the first harmonic (fundamental) component dominated the Fourier spectrum except for the 12-Hz luminance stimulus in which two components, a sine-wave-like component and a transient component, determined the response profiles, leading to large second harmonic components. The amplitude of the first harmonic component (F) increased as a function of the light-adaptation time except for the 12-Hz luminance stimulus at which the F component decreased as a function of the light-adaptation period. The phase of the first harmonic component changed only slightly (less than 30°) during the light-adaptation period for all stimuli conditions. The L/M ratio in luminance reflecting ERGs decreased with increasing adaptation time. Our present data suggest that the light-adaptation process mainly reflects changes in the luminance pathway. The responses to 12-Hz luminance stimuli are determined by two different luminance driven pathways with different adaptation characteristics.
Asunto(s)
Adaptación Ocular/fisiología , Adaptación a la Oscuridad/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Adulto , Color , Electrorretinografía , Femenino , Voluntarios Sanos , Humanos , Luminiscencia , Masculino , Estimulación LuminosaRESUMEN
BACKGROUND: The protective effect of a diet supplemented by the Amazonian fruit Euterpe oleracea (EO) against methylmercury (MeHg) toxicity in rat retina was studied using electroretinography (ERG) and biochemical evaluation of oxidative stress. METHOD: Wistar rats were submitted to conventional diet or EO-enriched diet for 28 days. After that, each group received saline solution or 5 mg/kg/day of MeHg for 7 days. Full-field single flash, flash and flicker ERGs were evaluated in the following groups: control, EO, MeHg, and EO+MeHg. The amplitudes of the a-wave, b-wave, photopic negative response from rod and/or cone were measured by ERGs as well as the amplitudes and phases of the fundamental component of the sine-wave flicker ERG. Lipid peroxidation was determined by thiobarbituric acid reactive species. RESULTS: All ERG components had decreased amplitudes in the MeHg group when compared with controls. EO-enriched food had no effect on the non-intoxicated animals. The intoxicated animals and those that received the supplemented diet presented significant amplitude reductions of the cone b-wave and of the fundamental flicker component when compared with non-intoxicated control. The protective effect of the diet on scotopic conditions was only observed for bright flashes eliciting a mixed rod and cone response. There was a significant increase of lipid peroxidation in the retina from animals exposed to MeHg and EO-supplemented diet was able to prevent MeHg-induced oxidative stress in retinal tissue. CONCLUSION: These findings open up perspectives for the use of diets supplemented with EO as a protective strategy against visual damage induced by MeHg.
Asunto(s)
Euterpe , Frutas , Compuestos de Metilmercurio/toxicidad , Estrés Oxidativo/efectos de los fármacos , Retina/fisiopatología , Enfermedades de la Retina/prevención & control , Animales , Dieta , Fenómenos Electrofisiológicos , Electrorretinografía , Peroxidación de Lípido , Masculino , Ratas , Ratas Wistar , Retina/efectos de los fármacos , Enfermedades de la Retina/inducido químicamente , Enfermedades de la Retina/fisiopatologíaRESUMEN
Osmotic swelling of neurons and glial cells contributes to the development of retinal edema and neurodegeneration. We show that nerve growth factor (NGF) inhibits the swelling of glial (Müller) and bipolar cells in rat retinal slices induced by barium-containing hypoosmotic solution. NGF also reduced Müller and bipolar cell swelling in the post-ischemic retina. On the other hand, NGF prevented the swelling of freshly isolated Müller cells, but not of isolated bipolar cells, suggesting that NGF induces a release of factors from Müller cells that inhibit bipolar cell swelling in retinal slices. The inhibitory effect of NGF on Müller cell swelling was mediated by activation of TrkA (the receptor tyrosine kinase A), but not p75(NTR) , and was prevented by blockers of metabotropic glutamate, P2Y1 , adenosine A1 , and fibroblast growth factor receptors. Basic fibroblast growth factor fully inhibited the swelling of freshly isolated Müller cells, but only partially the swelling of isolated bipolar cells. In addition, glial cell line-derived neurotrophic factor and transforming growth factor-ß1, but not epidermal growth factor and platelet-derived growth factor, reduced the swelling of bipolar cells. Both Müller and bipolar cells displayed TrkA immunoreactivity, while Müller cells were also immunostained for p75(NTR) and NGF. The data suggest that the neuroprotective effect of NGF in the retina is in part mediated by prevention of the cytotoxic glial and bipolar cell swelling. Cytotoxic cell swelling contributes to retinal neurodegeneration. Nerve growth factor (NGF) inhibits the osmotic swelling of glial cells by acting at TrkA, release of bFGF, and opening of K(+) and Cl(-) channels. The NGF-induced glial release of cytokines like bFGF inhibits the osmotic swelling of bipolar cells, suggesting that the neuroprotective effect of NGF is in part mediated by prevention of cytotoxic cell swelling.
Asunto(s)
Citocinas/metabolismo , Factor de Crecimiento Nervioso/farmacología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Células Bipolares de la Retina/efectos de los fármacos , Células Bipolares de la Retina/metabolismo , Animales , Tamaño de la Célula/efectos de los fármacos , Femenino , Factores de Crecimiento de Fibroblastos/fisiología , Masculino , Presión Osmótica , Ratas , Ratas Long-Evans , Receptores de Factor de Crecimiento Nervioso/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Activación Transcripcional/efectos de los fármacosRESUMEN
Nitric oxide (NO) is a cell-signaling molecule that regulates a variety of molecular pathways. We investigated the role of NO during preimplantation embryonic development by blocking its production with an inhibitor or supplementing in vitro bovine embryo cultures with its natural precursor, L-arginine, over different periods. Endpoints evaluated included blastocyst rates, development kinetics, and embryo quality. Supplementation with the NO synthase inhibitor N-Nitro-L-arginine-methyl ester (L-NAME) from Days 1 to 8 of culture decreased blastocyst (P < 0.05) and hatching (P < 0.05) rates. When added from Days 1 to 8, 50 mM L-arginine decreased blastocyst rates (P < 0.001); in contrast, when added from Days 5 to 8, 1 mM L-arginine improved embryo hatching rates (P < 0.05) and quality (P < 0.05) as well as increased POU5F1 gene expression (P < 0.05) as compared to the untreated control. Moreover, NO levels in the medium during this culture period positively correlated with the increased embryo hatching rates and quality (P < 0.05). These data suggest exerts its positive effects during the transition from morula to blastocyst stage, and that supplementing the embryo culture medium with L-arginine favors preimplantation development of bovine embryos.
Asunto(s)
Arginina/farmacología , Blastocisto/metabolismo , Medios de Cultivo , Técnicas de Cultivo de Embriones , Desarrollo Embrionario/efectos de los fármacos , Óxido Nítrico/metabolismo , Animales , Blastocisto/citología , Bovinos , Medios de Cultivo/química , Medios de Cultivo/farmacología , Inhibidores Enzimáticos/farmacología , NG-Nitroarginina Metil Éster/farmacologíaRESUMEN
Nitric oxide (NO) is a highly reactive gas with considerable diffusion power that is produced pre- and post synaptically in the central nervous system (CNS). In the visual system, it is involved in the processing of the visual information from the retina to superior visual centers. In this review we discuss the main mechanisms through which nitric oxide acts, in physiological levels, on the retina, lateral geniculate nucleus (LGN) and primary visual cortex. In the retina, the cGMP-dependent nitric oxide activity initially amplifies the signal, subsequently increasing the inhibitory activity, suggesting that the signal is "filtered". In the thalamus, on dLGN, neuronal activity is amplified by NO derived from brainstem cholinergic cells, in a cGMP-independent mechanism; the result is the amplification of the signal arriving from retina. Finally, on the visual cortex (V1), NO acts through changes on the cGMP levels, increasing signal detection. These observations suggest that NO works like a filter, modulating the signal along the visual pathways.
Asunto(s)
Óxido Nítrico/metabolismo , Retina/fisiología , Células Ganglionares de la Retina/metabolismo , Visión Ocular/fisiología , Corteza Visual/metabolismo , Animales , GMP Cíclico/metabolismo , Regulación de la Expresión Génica , Cuerpos Geniculados/metabolismo , Glutamina/metabolismo , Humanos , N-Metilaspartato/metabolismo , Neuronas/metabolismo , Retina/metabolismo , Transducción de Señal , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismoRESUMEN
RATIONALE: Indomethacin (INDO) is a widely utilized non-steroidal anti-inflammatory drug (NSAID) with recognized effect on the central nervous system. Although previous reports demonstrate that prolonged treatment with indomethacin can lead to behavioral alterations such as anxiety disorder, the biochemical effect exerted by this drug on the brain are not fully understood. OBJECTIVES: The aim of present study was to evaluate if anxiety-like behavior elicited by indomethacin is mediated by brains oxidative stress as well as if alpha-tocopherol, a potent antioxidant, is able to prevent the behavioral and biochemical alterations induced by indomethacin treatment. METHODS: Zebrafish were utilized as experimental model and subdivided into control, INDO 1 mg/Kg, INDO 2 mg/Kg, INDO 3 g/Kg, α-TP 2 mg/Kg, α-TP 2 mg/Kg + INDO 1 mg/Kg and α-TP + INDO 2 mg/Kg groups. Vertical distributions elicited by novelty and brain oxidative stress were utilized to determinate behavioral and biochemical alterations elicited by indomethacin treatment, respectively. RESULTS: Our results showed that treatment with indomethacin 3 mg/kg induces animal death. No changes in animal survival were observed in animals treated with lower doses of indomethacin. Indomethacin induced significant anxiogenic-like behavior as well as intense oxidative stress in zebrafish brain. Treatment with alpha-tocopherol was able to prevent anxiety-like behavior and brain oxidative stress induced by indomethacin. CONCLUSIONS: Data presented in current study demonstrated for the first time that indomethacin induces anxiety-like behavior mediated by brain oxidative stress in zebrafish as well as that pre-treatment with alpha-tocopherol is able to prevent these collateral effects.
Asunto(s)
Indometacina , Pez Cebra , Animales , Indometacina/toxicidad , alfa-Tocoferol/farmacología , Antiinflamatorios no Esteroideos/farmacología , Estrés Oxidativo , Encéfalo , Ansiedad/inducido químicamente , Ansiedad/tratamiento farmacológico , Ansiedad/prevención & controlRESUMEN
Acanthamoeba genus can affect humans with diseases such as granulomatous amebic encephalitis (GAE), a highly lethal neuroinfection. Several aspects of the disease still need to be elucidated. Animal models of GAE have advanced our knowledge of the disease. This work tested Wistar rats (Rattus norvegicus albinus) as an animal model of GAE. For this, 32 animals were infected with 1 × 106A. castellanii trophozoites of the T4 genotype. Ameba recovery tests were carried out using agar plates, vascular extravasation assays, behavioral tests, and histopathological technique with H/E staining. Data were subjected to linear regression analysis, one-way ANOVA, and Tukey's test, performed in the GraphPad Prism® 8.0 program, with a significance level of p < 0.05. The results revealed the efficiency of the model. Amebae were recovered from the liver, lungs, and brain of infected animals, and there were significant encephalic vascular extravasations and behavioral changes in these animals, but not in the control animals. However, not all infected animals showed positive histopathology for the analyzed organs. Nervous tissues were the least affected, demonstrating the role of the BBB in the defense of the CNS. Supported by the demonstrated evidence, we confirm the difficulties and the feasibilities of using rats as an animal model of GAE.
RESUMEN
Nitric oxide (NO) is a molecule involved in plasticity across levels and systems. The role of NOergic pathways in stress-induced sensitization (SIS) of behavioral responses, in which a particular stressor triggers a state of hyper-responsiveness to other stressors after an incubation period, was assessed in adult zebrafish. In this model, adult zebrafish acutely exposed to a fear-inducing conspecific alarm substance (CAS) and left undisturbed for an incubation period show increased anxiety-like behavior 24 h after exposure. CAS increased forebrain glutamate immediately after stress and 30 min after stress, an effect that was accompanied by increased nitrite levels immediately after stress, 30 min after stress, 90 min after stress, and 24 h after stress. CAS also increased nitrite levels in the head kidney, where cortisol is produced in zebrafish. CAS-elicited nitrite responses in the forebrain 90 min (but not 30 min) after stress were prevented by a NOS-2 blocker. Blocking NOS-1 30 min after stress prevents SIS; blocking NOS-2 90 min after stress also prevents stress-induced sensitization, as does blocking calcium-activated potassium channels in this latter time window. Stress-induced sensitization is also prevented by blocking guanylate cyclase activation in both time windows, and cGMP-dependent channel activation in the second time window. These results suggest that different NO-related pathways converge at different time windows of the incubation period to induce stress-induced sensitization.
Asunto(s)
Conducta Animal , GMP Cíclico , Pez Cebra , Animales , GMP Cíclico/metabolismo , Conducta Animal/efectos de los fármacos , Estrés Psicológico/metabolismo , Estrés Psicológico/psicología , Transducción de Señal , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico/metabolismo , MasculinoRESUMEN
Introduction: Diabetes mellitus describes a metabolic disorder of multiple etiologies, characterized by chronic hyperglycemia, which induces a series of molecular events capable of leading to microvascular damage, affecting the blood vessels of the retina, causing diabetic retinopathy. Studies indicate that oxidative stress plays a central role in complications involving diabetes. Açaí (Euterpe oleracea) has attracted much attention given its antioxidant capacity and potential associated health benefits in preventing oxidative stress, one of the causes of diabetic retinopathy. The objective of this work was to evaluate the possible protective effect of açaí (E. oleracea) on the retinal function of mice with induced diabetes, based on full field electroretinogram (ffERG). Methods: We opted for mouse models with induced diabetes by administration of a 2% alloxan aqueous solution and treatment with feed enriched with açaí pulp. The animals were divided into 4 groups: CTR (received commercial ration), DM (received commercial ration), DM + açaí (E. oleracea-enriched ration) and CTR + açaí (E. oleracea-enriched ration). The ffERG was recorded three times, 30, 45 and 60 days after diabetes induction, under scotopic and photopic conditions to access rod, mixed and cone responses, in addition to monitoring the weight and blood glucose of the animals during the study period. Statistical analysis was performed using the two-way ANOVA test with Tukey's post-test. Results: Our work obtained satisfactory results with the ffERG responses in diabetic animals treated with açaí, where it was observed that there was no significant decrease in the b wave ffERG amplitude of this group over time when compared to the results of the Diabetic group not treated with açaí, which showed a significant reduction of this ffERG component. Discussion: The results of the present study show, for the first time, that treatment with an açaí-enriched diet is effective against the decrease in the amplitude of visual electrophysiological responses in animals with induced diabetes, which opens a new horizon for the prevention of retinal damage in diabetic individuals from treatment with açaí base. However, it is worth mentioning that our findings consist of a preliminary study and further researches and clinical trials are needed to examine açaí potential as an alternative therapy for diabetic retinopathy.
RESUMEN
The number of people with central nervous system (CNS) injuries increases worldwide and only a few therapies are used to mitigate neurological damage. Crude extracts, compounds, and isolated molecules obtained from plants have neuroprotective effects; however, their actions on the central nervous system are still not fully understood. This systematic review investigated the neuroprotective effects of crude extracts, compound, and isolated molecules obtained from plants in different CNS lesions. This PICO (Population/Problem, Intervention, Control, Outcome) systematic review included in vivo and in vitro studies that used small rodents as experimental models of CNS injuries (P) treated with crude extracts, compounds, and/or isolated molecules obtained from plants (I), compared to non-intervention conditions (C), and that showed a neuroprotective effect (O). Fourteen out of 5,521 studies were selected for qualitative analysis. Several neuroprotective effects (improvement of antioxidant activity, modulation of the inflammatory response, tissue preservation, motor and cognitive recovery) in the brain and spinal cord were reported after treatment with different doses of crude extracts (10 studies), compounds (2 studies), and isolated molecules (2 studies). Crude extracts, compounds, or isolated molecules obtained from plants showed promising neuroprotective effects against several CNS injuries in both the brain and spinal cord, regardless of gender and age, through the modulation of inflammatory activity and oxidative biochemistry, tissue preservation, and recovery of motor and cognitive activity.
RESUMEN
Since glutamate is the primary excitatory neurotransmitter in the mammalian cochlea, the mechanisms for the removal of glutamate from the synaptic and extrasynaptic spaces are critical for maintaining normal function of this region. Glial cells of inner ear are crucial for regulation of synaptic transmission throughout since it closely interacts with neurons along the entire auditory pathway, however little is known about the activity and expression of glutamate transporters in the cochlea. In this study, using primary cochlear glial cells cultures obtained from newborn Balb/C mice, we determined the activity of a sodium-dependent and sodium-independent glutamate uptake mechanisms by means of High Performance Liquid Chromatography. The sodium-independent glutamate transport has a prominent contribution in cochlear glial cells which is similar to what has been demonstrated in other sensory organs, but it is not found in tissues less susceptible to continuous glutamate-mediated injuries. Our results showed that xCG- system is expressed in CGCs and is the main responsible for sodium-independent glutamate uptake. The identification and characterization of the xCG- transporter in the cochlea suggests a possible role of this transporter in the control of extracellular glutamate concentrations and regulation of redox state, that may aid in the preservation of auditory function.
Asunto(s)
Ácido Glutámico , Sodio , Ratones , Animales , Ácido Glutámico/metabolismo , Sodio/metabolismo , Cóclea/fisiología , Neuroglía/metabolismo , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Mamíferos/metabolismoRESUMEN
The GATs are the membrane proteins responsible for the uptake of GABA in the central nervous system. Alterations in GAT activity are implicated in several neurological diseases, including retinopathies. The present study describes an alternative method to determine GAT activity in tissue preparations of the central nervous system, using high performance liquid chromatography (HPLC) with fluorescence detection. The GABA concentration in the medium was determined using the o-phthaldehyde (OPA)-derivation protocol validated by the Brazilian Health Regulatory Agency (ANVISA) and the United States Food and Drug Administration (US-FDA). The GAT activity in the retinal preparations was determined through the evaluation of the GABA uptake, which was measured by assessing the difference between the initial and final concentrations of GABA in the incubation medium. The evaluation of the GAT kinetics returned values of Km = 382.5 ± 32.2 µM and Vmax = 34 nmol/mg of protein. The data also demonstrated that the GABA uptake was predominantly Na+- and temperature-dependent, and was also inhibited by incubation with nipecotic acid, a substrate of GABA transporters. Taken together, these findings confirm that our approach provided a specific measure of GAT activity in retinal tissue. The data presented here thus validate, for the first time, an alternative, simple and sensitive method for the evaluation of GAT activity using high performance chromatography on preparations of the central nervous system.
Asunto(s)
Retina , Ácido gamma-Aminobutírico , Sistema Nervioso Central/metabolismo , Cromatografía Líquida de Alta Presión , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Retina/metabolismo , Ácido gamma-Aminobutírico/metabolismoRESUMEN
Background: Açaí (Euterpe oleracea) has a rich nutritional composition, showing nutraceutical and protective effects in several organs. In this study, the effects of an açaí-enriched diet on motor performance, anxiety-like behavior, and memory retention were deeply investigated. Methods: Eight-week male Wistar rats were fed with an Euterpe oleracea (EO) pulp-enriched diet, an olive oil-enriched (OO) diet (polyunsaturated fatty acid [PUFA] fat control diet), or a chow diet for 31 days (28 days pre-treatment and 3 days during behavioral tests). Afterward, animals were submitted to a battery of behavioral tests to evaluate spontaneous motor behavior (open-field test), anxiety-like behavior (elevated plus maze and open-field test), and memory retention (step-down). Oxidative stress in the hippocampus was evaluated by a lipid peroxidation assay. Results: EO-enriched diet did not influence the body weight and food intake but increased the glucose plasmatic level after 31 days under this diet. However, a similar fat-enriched diet stimulated a marked weight gain and reduced the food intake, followed by changes in the plasmatic lipid markers. EO-enriched diet preserved the motor spontaneous performance, increased the exploration in the aversive environment (anxiolytic-like effects), and elevated the latency to step-down (improved memory retention). The EO-enriched diet also reduced the level of lipid peroxidation in the hippocampus. These positive effects of EO-enriched diet can greatly support the usage of this diet as a preventive therapy. Conclusion: Taken together, the current study suggests that Euterpe oleracea-enriched diet promotes anxiolytic-like effects and improves memory consolidation, possibly due to the reduced levels of lipid peroxidation in the hippocampus.
RESUMEN
Background: Aggression is a set of complex behaviors commonly described in different neurological disorders, such as schizophrenia, autistim spectrum disorder, and anxiety. Previous studies have described that some changes in the redox status of the brain are closely associated with aggressive behavior in different species. In addition, the endocannabinoid system acts as a neuromodulator of the central nervous system, however, its participation in aggressive behavior needs to be elucidated. Danio rerio (zebrafish) is an important model in the study of aggression, in this context, the present study investigated whether the activation of type 1 cannabinoid receptors (CB1r) alters the cerebral redox state and aggressive behavior in zebrafish. Materials and Methods: We performed pharmacological manipulations with the CB1r agonist (ACEA) and antagonist (AM-251) to assess the role of this receptor in aggressive behavior. Individuals were isolated in pairs, without physical contact for 24 h, treated with the drugs of interest, and after 30 minutes of pharmacokinetics, the fights were filmed for 30 min, and the individuals were identified as dominant or subordinate. Results: A consistent decrease in the strike and bite aggressive behavior was observed in the group treated with the ACEA agonist compared with that in the control and AM-251 groups. When evaluating the cerebral redox state, we observed that treatment with the ACEA agonist reduced malondialdehyde (MDA) levels and increased the levels of sulfhydryl groups compared with those in the control group. These results indicate that the activation of CB1r by the ACEA agonist inhibited aggressiveness and attenuated the levels of oxidative stress in both subjects (dominant or subordinate) in the treated group. Conclusion: Thus, we suggest that zebrafish is an alternative model to study common aggressive behavior disorders among species and that CB1r represent a potential target for the development of treatments for aggressive disorders.
RESUMEN
BACKGROUND: Cerebral malaria is one of the most severe complications attributed to protozoal infection by Plasmodium falciparum, gaining prominence in children mortality rates in endemic areas. This condition has a complex pathogenesis associated with behavioral, cognitive and motor sequels in humans and current antimalarial therapies have shown little effect in those aspects. Natural products with antioxidant and anti-inflammatory properties have become a valuable alternative therapeutic option in the treatment of distinct conditions. In this context, this study investigated the neuroprotective effect of Euterpe oleracea (açai) enriched diet during the development of experimental cerebral malaria induced by the inoculation of Swiss albino mice with Plasmodium berghei ANKA strain. METHODS: After Plasmodium infection, animals were maintained on a feeding with Euterpe oleracea enriched ration and parameters such as survival curve, parasitemia and body weight were routinely monitored. The present study has also evaluated the effect of açai-enriched diet on the blood-brain barrier leakage, histological alterations and neurocognitive impairments in mice developing cerebral malaria. RESULTS: Our results demonstrate that between 7th-19th day post infection the survival rate of the group treated with açai enriched ration was higher when compared with Plasmodium-infected mice in which 100% of mice died until the 11th days post-infection, demonstrating that açai diet has a protective effect on the survival of infected treated animals. The same was observed in the brain vascular extravasation, where Evans blue dye assays showed significantly less dye extravasation in the brains of Plasmodium-infected mice treated with açai enriched ration, demonstrating more preserved blood-brain barrier integrity. Açai-enriched diet also attenuate the histopathological alterations elicited by Plasmodium berghei infection. We also showed a decrease of the neurological impairments arising from the exposure of cerebral parenchyma in the group treated with açai diet, ameliorating motor and neuropsychiatric changes, analyzed through the SHIRPA protocol. CONCLUSION: With these results, we conclude that the treatment with açai enriched ration decreased the mortality of infected animals, as well as protected the blood-brain barrier and the neurocognitive deficits in Plasmodium-infected animals.
Asunto(s)
Euterpe , Malaria Cerebral/dietoterapia , Malaria Cerebral/prevención & control , Fármacos Neuroprotectores/uso terapéutico , Fitoterapia , Alimentación Animal , Animales , Síntomas Conductuales/etiología , Síntomas Conductuales/prevención & control , Barrera Hematoencefálica , Femenino , Frutas , Malaria Cerebral/fisiopatología , Masculino , Ratones , Plantas Medicinales , Plasmodium bergheiRESUMEN
Astrocyte reactivity in the spinal cord may occur after peripheral neural damage. However, there is no data to report such reactivity after Achilles tendon injury. We investigate whether changes occur in the spinal cord, mechanical sensitivity and gait in two phases of repair after Achilles tendon injury. Wistar rats were divided into groups: control (CTRL, without rupture), 2 days post-injury (RUP2) and 21 days post-injury (RUP21). Functional and mechanical sensitivity tests were performed at 2 and 21 days post-injury (dpi). The spinal cords were processed, cryosectioned and activated astrocytes were immunostained by GFAP at 21 dpi. Astrocyte reactivity was observed in the L5 segment of the spinal cord with predominance in the white matter regions and decrease in the mechanical threshold of the ipsilateral paw only in RUP2. However, there was gait impairment in both RUP2 and RUP21. We conclude that during the acute phase of Achilles tendon repairment, there was astrocyte reactivity in the spinal cord and impairment of mechanical sensitivity and gait, whereas in the chronic phase only gait remains compromised.
RESUMEN
Serotonin (5-HT) receptors have been implicated in responses to aversive stimuli in mammals and fish, but its precise role is still unknown. Moreover, since at least seven families of 5-HT receptors exist in vertebrates, the role of specific receptors is still debated. Aversive stimuli can be classified as indicators of proximal, distal, or potential threat, initiating responses that are appropriate for each of these threat levels. Responses to potential threat usually involve cautious exploration and increased alertness, while responses to distal and proximal threat involve a fight-flight-freeze reaction. We exposed adult zebrafish to a conspecific alarm substance (CAS) and observed behavior during (distal threat) and after (potential threat) exposure, and treated with the 5-HT2C receptor agonists MK-212 or WAY-161503 or with the antagonist RS-102221. The agonists blocked CAS-elicited defensive behavior (distal threat), but not post-exposure increases in defensive behavior (potential threat), suggesting inhibition of responses to distal threat. MK-212 blocked changes in freezing elicited by acute restraint stress, a model of proximal threat, while RS-102221 blocked changes in geotaxis elicited this stressor. We also found that RS-102221, a 5-HT2C receptor antagonist, produced small effect on behavior during and after exposure to CAS. Preprint: https://www.biorxiv.org/content/10.1101/2020.10.04.324202; Data and scripts: https://github.com/lanec-unifesspa/5-HT-CAS/tree/master/data/5HT2C.