RESUMEN
The recent theory-driven discovery of a class of clathrate hydrides (e.g., CaH6, YH6, YH9, and LaH10) with superconducting critical temperatures (Tc) well above 200 K has opened the prospects for "hot" superconductivity above room temperature under pressure. Recent efforts focus on the search for superconductors among ternary hydrides that accommodate more diverse material types and configurations compared to binary hydrides. Through extensive computational searches, we report the prediction of a unique class of thermodynamically stable clathrate hydrides structures consisting of two previously unreported H24 and H30 hydrogen clathrate cages at megabar pressures. Among these phases, LaSc2H24 shows potential hot superconductivity at the thermodynamically stable pressure range of 167 to 300 GPa, with calculated Tcs up to 331 K at 250 GPa and 316 K at 167 GPa when the important effects of anharmonicity are included. The very high critical temperatures are attributed to an unusually large hydrogen-derived density of states at the Fermi level arising from the newly reported peculiar H30 as well as H24 cages in the structure. Our predicted introduction of Sc in the La-H system is expected to facilitate future design and realization of hot superconductors in ternary clathrate superhydrides.
RESUMEN
MicroRNAs (miRNAs) are a subset of small non-coding single-stranded RNA molecules involved in the regulation of post-transcriptional gene expression of a variety of transcript targets. Therefore altered miRNA expression may result in the dysregulation of key genes and biological pathways that has been reported with the onset and progression of neurodegenerative diseases, such as Amyotrophic lateral sclerosis (ALS). ALS is marked by a progressive degeneration of motor neurons (MNs) present in the spinal cord, brain stem and motor cortex. Although the pathomechanism underlying molecular interactions of ALS remains poorly understood, alterations in RNA metabolism, including dysregulation of miRNA expression in familial as well as sporadic forms are still scarcely studied. In this study, we performed combined transcriptomic data and miRNA profiling in MN samples of the same samples of iPSC-derived MNs from SOD1- and TARDBP (TDP-43 protein)-mutant-ALS patients and healthy controls. We report a global upregulation of mature miRNAs, and suggest that differentially expressed (DE) miRNAs have a significant impact on mRNA-level in SOD1-, but not in TARDBP-linked ALS. Furthermore, in SOD1-ALS we identified dysregulated miRNAs such as miR-124-3p, miR-19b-3p and miR-218 and their potential targets previously implicated in important functional process and pathogenic pathways underlying ALS. These miRNAs may play key roles in the neuronal development and cell survival related functions in SOD1-ALS. Altogether, we provide evidence of miRNA regulated genes expression mainly in SOD1 rather than TDP43-ALS.
Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Unión al ADN , Células Madre Pluripotentes Inducidas , MicroARNs , Neuronas Motoras , ARN Mensajero , Superóxido Dismutasa-1 , MicroARNs/genética , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Transcriptoma/genéticaRESUMEN
SignificanceBiomolecular condensates are intracellular organelles that are not bounded by membranes and often show liquid-like, dynamic material properties. They typically contain various types of proteins and nucleic acids. How the interaction of proteins and nucleic acids finally results in dynamic condensates is not fully understood. Here we use optical tweezers and fluorescence microscopy to study how the prototypical prion-like protein Fused-in-Sarcoma (FUS) condenses with individual molecules of single- and double-stranded DNA. We find that FUS adsorbs on DNA in a monolayer and hence generates an effectively sticky FUS-DNA polymer that collapses and finally forms a dynamic, reversible FUS-DNA co-condensate. We speculate that protein monolayer-based protein-nucleic acid co-condensation is a general mechanism for forming intracellular membraneless organelles.
Asunto(s)
ADN de Cadena Simple/química , ADN/química , Proteína FUS de Unión a ARN/química , Humanos , Microscopía FluorescenteRESUMEN
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease which currently lacks effective treatments. Mutations in the RNA-binding protein FUS are a common cause of familial ALS, accounting for around 4% of the cases. Understanding the mechanisms by which mutant FUS becomes toxic to neurons can provide insight into the pathogenesis of both familial and sporadic ALS. We have previously observed that overexpression of wild-type or ALS-mutant FUS in Drosophila motor neurons is toxic, which allowed us to screen for novel genetic modifiers of the disease. Using a genome-wide screening approach, we identified Protein Phosphatase 2A (PP2A) and Glycogen Synthase Kinase 3 (GSK3) as novel modifiers of FUS-ALS. Loss of function or pharmacological inhibition of either protein rescued FUS-associated lethality in Drosophila. Consistent with a conserved role in disease pathogenesis, pharmacological inhibition of both proteins rescued disease-relevant phenotypes, including mitochondrial trafficking defects and neuromuscular junction failure, in patient iPSC-derived spinal motor neurons (iPSC-sMNs). In FUS-ALS flies, mice, and human iPSC-sMNs, we observed reduced GSK3 inhibitory phosphorylation, suggesting that FUS dysfunction results in GSK3 hyperactivity. Furthermore, we found that PP2A acts upstream of GSK3, affecting its inhibitory phosphorylation. GSK3 has previously been linked to kinesin-1 hyperphosphorylation. We observed this in both flies and iPSC-sMNs, and we rescued this hyperphosphorylation by inhibiting GSK3 or PP2A. Moreover, increasing the level of kinesin-1 expression in our Drosophila model strongly rescued toxicity, confirming the relevance of kinesin-1 hyperphosphorylation. Our data provide in vivo evidence that PP2A and GSK3 are disease modifiers, and reveal an unexplored mechanistic link between PP2A, GSK3, and kinesin-1, that may be central to the pathogenesis of FUS-ALS and sporadic forms of the disease.
Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/patología , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Enfermedades Neurodegenerativas/patología , Cinesinas/genética , Cinesinas/metabolismo , Neuronas Motoras/metabolismo , Drosophila/genética , Drosophila/metabolismo , Mutación/genéticaRESUMEN
Mitochondria are unique organelles that have their own genome (mtDNA) and perform various pivotal functions within a cell. Recently, evidence has highlighted the role of mitochondria in the process of stem cell differentiation, including differentiation of neural stem cells (NSCs). Here we studied the importance of mtDNA function in the early differentiation process of NSCs in two cell culture models: the CGR8-NS cell line that was derived from embryonic stem cells by a lineage selection technique, and primary NSCs that were isolated from embryonic day 14 mouse fetal forebrain. We detected a dramatic increase in mtDNA content upon NSC differentiation to adapt their mtDNA levels to their differentiated state, which was not accompanied by changes in mitochondrial transcription factor A expression. As chemical mtDNA depletion by ethidium bromide failed to generate living ρ° cell lines from both NSC types, we used inhibition of mtDNA polymerase-γ by 2'-3'-dideoxycytidine to reduce mtDNA replication and subsequently cellular mtDNA content. Inhibition of mtDNA replication upon NSC differentiation reduced neurogenesis but not gliogenesis. The mtDNA depletion did not change energy production/consumption or cellular reactive oxygen species (ROS) content in the NSC model used. In conclusion, mtDNA replication is essential for neurogenesis but not gliogenesis in fetal NSCs through as yet unknown mechanisms, which, however, are largely independent of energy/ROS metabolism.
Asunto(s)
Replicación del ADN , ADN Mitocondrial , Células-Madre Neurales , Neurogénesis , Animales , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Neurogénesis/fisiología , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Ratones , Diferenciación Celular , Especies Reactivas de Oxígeno/metabolismo , Línea CelularRESUMEN
In alkyllithium chemistry the highest reactivity has historically been linked to the smallest degree of aggregation possible. Since tert-butyllithium is known to form a monomer in tetrahydrofuran solution, using just stoichiometric amounts of the lewis base to selectively form a dimeric species seemed irrational. In this study, we showed a considerable increase of the reactivity of t-BuLi when using stoichiometric amounts of THF in the non-polar solvent n-pentane in order to enable the deprotonation of simple methyl silanes and other low C-H-acidic substrates. In this context, we were able to obtain the corresponding aggregates of t-BuLi with the ligand THF in suspension and as crystalline solids and investigate them by single crystal X-ray structural analysis, inâ situ FTIR spectroscopy and quantum chemical calculations. Furthermore, we were able to explain the enhanced reactivity of t-BuLi with stoichiometric amounts of THF on the basis of structural features of the bridged dimer obtained under these conditions. With these findings, we present a new target in the aggregation of alkyllithium reagents: the selectively formed "frustrated" aggregates!
RESUMEN
BACKGROUND AND PURPOSE: In amyotrophic lateral sclerosis (ALS), phrenic nerve (PN) atrophy has been found, whereas there is controversy regarding vagus nerve (VN) atrophy. Here, we aimed to find out whether PN atrophy is related to respiratory function and 12-month survival. Moreover, we investigated the relevance of VN and spinal accessory nerve (AN) atrophy in ALS. METHODS: This prospective observational monocentric study included 80 adult participants (40 ALS patients, 40 age- and sex-matched controls). The cross-sectional area (CSA) of bilateral cervical VN, AN, and PN was measured on high-resolution ultrasonography. Clinical assessments included the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R), the Non-Motor Symptoms Questionnaire, and handheld spirometry of forced vital capacity (FVC). One-year survival was documented. RESULTS: The CSA of each nerve, VN, AN, and PN, was smaller in ALS patients compared to controls. VN atrophy was unrelated to nonmotor symptom scores. PN CSA correlated with the respiratory subscore of the ALSFRS-R (Spearman test, r = 0.59, p < 0.001), the supine FVC (r = 0.71, p < 0.001), and the relative change of sitting-supine FVC (r = -0.64, p = 0.001). Respiratory impairment was predicted by bilateral mean PN CSA (p = 0.046, optimum cutoff value of ≤0.37 mm2 , sensitivity = 92%, specificity = 56%) and by the sum of PN and AN CSA (p = 0.036). The combination of ALSFRS-R score with PN and AN CSA measures predicted 1-year survival with similar accuracy as the combination of ALSFRS-R score and FVC. CONCLUSIONS: Ultrasonography detects degeneration of cranial nerve motor fibers. PN and AN calibers are tightly related to respiratory function and 1-year survival in ALS.
Asunto(s)
Esclerosis Amiotrófica Lateral , Adulto , Humanos , Esclerosis Amiotrófica Lateral/complicaciones , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Atrofia , Nervio Frénico/diagnóstico por imagen , Ultrasonido , Nervio Vago , Masculino , FemeninoRESUMEN
BACKGROUND AND PURPOSE: In 2016, we concluded a randomized controlled trial testing 1 mg rasagiline per day add-on to standard therapy in 252 amyotrophic lateral sclerosis (ALS) patients. This article aims at better characterizing ALS patients who could possibly benefit from rasagiline by reporting new subgroup analysis and genetic data. METHODS: We performed further exploratory in-depth analyses of the study population and investigated the relevance of single nucleotide polymorphisms (SNPs) related to the dopaminergic system. RESULTS: Placebo-treated patients with very slow disease progression (loss of Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised [ALSFRS-R] per month before randomization of ≤0.328 points) showed a per se survival probability after 24 months of 0.85 (95% confidence interval = 0.65-0.94). The large group of intermediate to fast progressing ALS patients showed a prolonged survival in the rasagiline group compared to placebo after 6 and 12 months (p = 0.02, p = 0.04), and a reduced decline of ALSFRS-R after 18 months (p = 0.049). SNP genotypes in the MAOB gene and DRD2 gene did not show clear associations with rasagiline treatment effects. CONCLUSIONS: These results underline the need to consider individual disease progression at baseline in future ALS studies. Very slow disease progressors compromise the statistical power of studies with treatment durations of 12-18 months using clinical endpoints. Analysis of MAOB and DRD2 SNPs revealed no clear relationship to any outcome parameter. More insights are expected from future studies elucidating whether patients with DRD2CC genotype (Rs2283265) show a pronounced benefit from treatment with rasagiline, pointing to the opportunities precision medicine could open up for ALS patients in the future.
Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/complicaciones , Indanos/uso terapéutico , Progresión de la EnfermedadRESUMEN
OBJECTIVE: To assess the performance of serum neurofilament light chain (sNfL) in clinical phenotypes of amyotrophic lateral sclerosis (ALS). METHODS: In 2949 ALS patients at 16 ALS centers in Germany and Austria, clinical characteristics and sNfL were assessed. Phenotypes were differentiated for two anatomical determinants: (1) upper and/or lower motor involvement (typical, typMN; upper/lower motor neuron predominant, UMNp/LMNp; primary lateral sclerosis, PLS) and (2) region of onset and propagation of motor neuron dysfunction (bulbar, limb, flail-arm, flail-leg, thoracic onset). Phenotypes were correlated to sNfL, progression, and survival. RESULTS: Mean sNfL was - compared to typMN (75.7 pg/mL, n = 1791) - significantly lower in LMNp (45.1 pg/mL, n = 413), UMNp (58.7 pg/mL n = 206), and PLS (37.6 pg/mL, n = 84). Also, sNfL significantly differed in the bulbar (92.7 pg/mL, n = 669), limb (64.1 pg/mL, n = 1305), flail-arm (46.4 pg/mL, n = 283), flail-leg (53.6 pg/mL, n = 141), and thoracic (74.5 pg/mL, n = 96) phenotypes. Binary logistic regression analysis showed highest contribution to sNfL elevation for faster progression (odds ratio [OR] 3.24) and for the bulbar onset phenotype (OR 1.94). In contrast, PLS (OR 0.20), LMNp (OR 0.45), and thoracic onset (OR 0.43) showed reduced contributions to sNfL. Longitudinal sNfL (median 12 months, n = 2862) showed minor monthly changes (<0.2%) across all phenotypes. Correlation of sNfL with survival was confirmed (p < 0.001). CONCLUSIONS: This study underscored the correlation of ALS phenotypes - differentiated for motor neuron involvement and region of onset/propagation - with sNfL, progression, and survival. These phenotypes demonstrated a significant effect on sNfL and should be recognized as independent confounders of sNfL analyses in ALS trials and clinical practice.
Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Neurofilamentos , Fenotipo , Humanos , Esclerosis Amiotrófica Lateral/sangre , Proteínas de Neurofilamentos/sangre , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estudios Longitudinales , Progresión de la Enfermedad , Biomarcadores/sangre , Adulto , Alemania/epidemiologíaRESUMEN
The Na-W-H and Na-Re-H ternary systems were studied in a diamond anvil cell through X-ray diffraction and Raman spectroscopy, supported by density functional theory and molecular dynamics calculations. Na3WH9 can be synthesized above 7.8 GPa and 1400 K, remaining stable between at least 0.1 and 42.1 GPa. The rhenium analogue Na3ReH8 can form at 10.1 GPa upon laser heating, being stable between at least 0.3 and 32.5 GPa. Na3WH9 and Na3ReH8 host [WH9]3- and [ReH8]3- anions, respectively, forming homoleptic 18-electron complexes in both cases. Both ternary hydrides show similar structural types and pressure dependent phase transitions. At the highest pressures they adopt a distorted fcc Heusler structure (Na3WH9-II' and Na3ReH8-II') while upon decompression the structure symmetrizes becoming fcc between â¼6.4 and 10 GPa for Na3WH9-II and at 17 GPa for Na3ReH8-II. On further pressure release, the fcc phases transform into variants of a (quasi-) hexagonal structure at â¼3 GPa, Na3WH9-I and Na3ReH8-I.
RESUMEN
The solar system's outer planets, and many of their moons, are dominated by matter from the H-C-N-O chemical space, based on solar system abundances of hydrogen and the planetary ices [Formula: see text]O, [Formula: see text], and [Formula: see text] In the planetary interiors, these ices will experience extreme pressure conditions, around 5 Mbar at the Neptune mantle-core boundary, and it is expected that they undergo phase transitions, decompose, and form entirely new compounds. While temperature will dictate the formation of compounds, ground-state density functional theory allows us to probe the chemical effects resulting from pressure alone. These structural developments in turn determine the planets' interior structures, thermal evolution, and magnetic field generation, among others. Despite its importance, the H-C-N-O system has not been surveyed systematically to explore which compounds emerge at high-pressure conditions, and what governs their stability. Here, we report on and analyze an unbiased crystal structure search among H-C-N-O compounds between 1 and 5 Mbar. We demonstrate that simple chemical rules drive stability in this composition space, which explains why the simplest possible quaternary mixture HCNO-isoelectronic to diamond-emerges as a stable compound and discuss dominant decomposition products of planetary ice mixtures.
RESUMEN
The term Fermi liquid is almost synonymous with the metallic state. The association is known to break down at quantum critical points (QCPs), but these require precise values of tuning parameters, such as pressure and applied magnetic field, to exactly suppress a continuous phase transition temperature to the absolute zero. Three-dimensional non-Fermi liquid states, apart from superconductivity, that are unshackled from a QCP are much rarer and are not currently well understood. Here, we report that the triangular lattice system uranium diauride (UAu2) forms such a state with a non-Fermi liquid low-temperature heat capacity [Formula: see text] and electrical resistivity [Formula: see text] far below its Néel temperature. The magnetic order itself has a novel structure and is accompanied by weak charge modulation that is not simply due to magnetostriction. The charge modulation continues to grow in amplitude with decreasing temperature, suggesting that charge degrees of freedom play an important role in the non-Fermi liquid behavior. In contrast with QCPs, the heat capacity and resistivity we find are unusually resilient in magnetic field. Our results suggest that a combination of magnetic frustration and Kondo physics may result in the emergence of this novel state.
RESUMEN
Increased signs of DNA damage have been associated to aging and neurodegenerative diseases. DNA damage repair mechanisms are tightly regulated and involve different pathways depending on cell types and proliferative vs. postmitotic states. Amongst them, fused in sarcoma (FUS) was reported to be involved in different pathways of single- and double-strand break repair, including an early recruitment to DNA damage. FUS is a ubiquitously expressed protein, but if mutated, leads to a more or less selective motor neurodegeneration, causing amyotrophic lateral sclerosis (ALS). Of note, ALS-causing mutation leads to impaired DNA damage repair. We thus asked whether FUS recruitment dynamics differ across different cell types putatively contributing to such cell-type-specific vulnerability. For this, we generated engineered human induced pluripotent stem cells carrying wild-type FUS-eGFP and analyzed different derivatives from these, combining a laser micro-irradiation technique and a workflow to analyze the real-time process of FUS at DNA damage sites. All cells showed FUS recruitment to DNA damage sites except for hiPSC, with only 70% of cells recruiting FUS. In-depth analysis of the kinetics of FUS recruitment at DNA damage sites revealed differences among cellular types in response to laser-irradiation-induced DNA damage. Our work suggests a cell-type-dependent recruitment behavior of FUS during the DNA damage response and repair procedure. The presented workflow might be a valuable tool for studying the proteins recruited at the DNA damage site in a real-time course.
Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Daño del ADN , MutaciónRESUMEN
BACKGROUND: The course of amyotrophic lateral sclerosis (ALS,) associated with progressive physical limitations, is a challenge to the patients themselves and also to their family caregivers, who have to deal with psychosocial, socio-medical and organizational issues. Caregivers are often closely involved and heavily burdened themselves, which is why specific support is recommended. The aim of this study was to investigate the feasibility and acceptance of psychologically guided supportive group meetings for family caregivers in a specialist ALS outpatient clinic. METHODS: Over a period of two years, data were collected from a total of 26 caregivers of ALS patients in order to evaluate the relevance, usefulness and criticisms of open-topic meetings that took place every three months. RESULTS: Topics discussed in the meetings included mainly psychosocial issues such as self-care, dealing with emotions or with conflicts with the patients and third parties, as well as practical and organizational matters. The meetings were predominantly rated as helpful, well understandable and personally relevant and the exchange in a "community of destiny" was perceived as emotionally relieving. DISCUSSION: The ALS caregiver group meetings in the described format were easy to carry out and well accepted. Supportive interventions, such as the one reported here, might be a valuable component of ALS care, to relieve the highly burdened caregivers of ALS-patients by providing them with social, emotional and practical support. However, the quantitative verification of the intervention's effectiveness is challenging - both methodologically and due to the caregivers' complex life situation. Psychosocial support services for ALS caregivers are feasible with little effort and should be an integral part of the standard ALS care based on a multi-dimensional, palliative care concept.
Asunto(s)
Esclerosis Amiotrófica Lateral , Cuidadores , Humanos , Cuidadores/psicología , Adaptación Psicológica , Esclerosis Amiotrófica Lateral/terapia , Esclerosis Amiotrófica Lateral/psicología , Emociones , Cuidados Paliativos , Calidad de Vida/psicologíaRESUMEN
The elements hydrogen, carbon, and nitrogen are among the most abundant in the solar system. Still, little is known about the ternary compounds these elements can form under the high-pressure and high-temperature conditions found in the outer planets' interiors. These materials are also of significant research interest since they are predicted to feature many desirable properties such as high thermal conductivity and hardness due to strong covalent bonding networks. In this study, the high-pressure high-temperature reaction behavior of malononitrile H2 C(CN)2 , dicyandiamide (H2 N)2 C=NCN, and melamine (C3 N3 )(NH2 )3 was investigated in laser-heated diamond anvil cells. Two previously unknown compounds, namely α-C(NH)2 and ß-C(NH)2 , have been synthesized and found to have fully sp3 -hybridized carbon atoms. α-C(NH)2 crystallizes in a distorted ß-cristobalite structure, while ß-C(NH)2 is built from previously unknown imide-bridged 2,4,6,8,9,10-hexaazaadamantane units, which form two independent interpenetrating diamond-like networks. Their stability domains and compressibility were studied, for which supporting density functional theory calculations were performed.
RESUMEN
BACKGROUND: It is generally believed that the pathogenesis of PINK1/parkin-related Parkinson's disease (PD) is due to a disturbance in mitochondrial quality control. However, recent studies have found that PINK1 and Parkin play a significant role in mitochondrial calcium homeostasis and are involved in the regulation of mitochondria-endoplasmic reticulum contact sites (MERCSs). OBJECTIVE: The aim of our study was to perform an in-depth analysis of the role of MERCSs and impaired calcium homeostasis in PINK1/Parkin-linked PD. METHODS: In our study, we used induced pluripotent stem cell-derived dopaminergic neurons from patients with PD with loss-of-function mutations in PINK1 or PRKN. We employed a split-GFP-based contact site sensor in combination with the calcium-sensitive dye Rhod-2 AM and applied Airyscan live-cell super-resolution microscopy to determine how MERCSs are involved in the regulation of mitochondrial calcium homeostasis. RESULTS: Our results showed that thapsigargin-induced calcium stress leads to an increase of the abundance of narrow MERCSs in wild-type neurons. Intriguingly, calcium levels at the MERCSs remained stable, whereas the increased net calcium influx resulted in elevated mitochondrial calcium levels. However, PINK1-PD or PRKN-PD neurons showed an increased abundance of MERCSs at baseline, accompanied by an inability to further increase MERCSs upon thapsigargin-induced calcium stress. Consequently, calcium distribution at MERCSs and within mitochondria was disrupted. CONCLUSIONS: Our results demonstrated how the endoplasmic reticulum and mitochondria work together to cope with calcium stress in wild-type neurons. In addition, our results suggests that PRKN deficiency affects the dynamics and composition of MERCSs differently from PINK1 deficiency, resulting in differentially affected calcium homeostasis. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Asunto(s)
Enfermedad de Parkinson , Humanos , Calcio/metabolismo , Neuronas Dopaminérgicas/metabolismo , Retículo Endoplásmico/metabolismo , Homeostasis , Mitocondrias/patología , Enfermedad de Parkinson/patología , Proteínas Quinasas/genética , Tapsigargina/metabolismo , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
INTRODUCTION/AIMS: The leading clinical feature of 5q-associated spinal muscular atrophy (SMA) is symmetric, proximal muscle weakness. Muscles involved in ventilation exhibit a specific pattern of denervation: intercostal muscles are severely atrophic, whereas the diaphragm muscle is less affected. The aim of this study was to investigate the involvement of diaphragmatic function by ultrasound imaging in adult patients with SMA and to quantify dynamics of diaphragmatic function during nusinersen treatment. METHODS: Diaphragmatic thickness, thickening, and excursion during quiet breathing were assessed in 24 adult patients with SMA type 2 and 3 by diaphragm ultrasound imaging before and during nusinersen treatment and were correlated with spirometric parameters. RESULTS: Diaphragm thickness was not reduced, but increased in a remarkable proportion of patients, whereas diaphragm thickening and excursion were reduced in about 20% to 30% of nusinersen-naive, adult patients with SMA types 2 and 3. During 26 months of nusinersen treatment, diaphragm thickening fraction and excursion improved. DISCUSSION: Diaphragm ultrasound imaging can provide disease- and treatment-relevant information that is not identified during routine clinical assessments and may therefore be a valuable complementary outcome measure.
Asunto(s)
Atrofia Muscular Espinal , Atrofias Musculares Espinales de la Infancia , Humanos , Adulto , Diafragma/diagnóstico por imagen , Atrofia Muscular Espinal/diagnóstico por imagen , Atrofia Muscular Espinal/tratamiento farmacológico , Oligonucleótidos/uso terapéutico , Atrofias Musculares Espinales de la Infancia/tratamiento farmacológicoRESUMEN
BACKGROUND AND PURPOSE: The objective was to assess the performance of serum neurofilament light chain (sNfL) in amyotrophic lateral sclerosis (ALS) in a wide range of disease courses, in terms of progression, duration and tracheostomy invasive ventilation (TIV). METHODS: A prospective cross-sectional study at 12 ALS centers in Germany was performed. sNfL concentrations were age adjusted using sNfL Z scores expressing the number of standard deviations from the mean of a control reference database and correlated to ALS duration and ALS progression rate (ALS-PR), defined by the decline of the ALS Functional Rating Scale. RESULTS: In the total ALS cohort (n = 1378) the sNfL Z score was elevated (3.04; 2.46-3.43; 99.88th percentile). There was a strong correlation of sNfL Z score with ALS-PR (p < 0.001). In patients with long (5-10 years, n = 167) or very long ALS duration (>10 years, n = 94) the sNfL Z score was significantly lower compared to the typical ALS duration of <5 years (n = 1059) (p < 0.001). Furthermore, in patients with TIV, decreasing sNfL Z scores were found in correlation with TIV duration and ALS-PR (p = 0.002; p < 0.001). CONCLUSIONS: The finding of moderate sNfL elevation in patients with long ALS duration underlined the favorable prognosis of low sNfL. The strong correlation of sNfL Z score with ALS-PR strengthened its value as progression marker in clinical management and research. The lowering of sNfL in correlation with long TIV duration could reflect a reduction either in disease activity or in the neuroaxonal substrate of biomarker formation during the protracted course of ALS.
Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Estudios Transversales , Estudios Prospectivos , Filamentos Intermedios , Biomarcadores , Proteínas de Neurofilamentos , Progresión de la EnfermedadRESUMEN
The binary Xe-Ar system has been studied in a series of high pressure diamond anvil cell experiments up to 60 GPa at 300 K. In-situ x-ray powder diffraction and Raman spectroscopy indicate the formation of a van der Waals compound, XeAr2, at above 3.5 GPa. Powder x-ray diffraction analysis demonstrates that XeAr2 adopts a Laves MgZn2-type structure with space group P63/mmc and cell parameters a = 6.595 Å and c = 10.716 Å at 4 GPa. Density functional theory calculations support the structure determination, with agreement between experimental and calculated Raman spectra. Our DFT calculations suggest that XeAr2 would remain stable without a structural transformation or decomposition into elemental Xe and Ar up to at least 80 GPa.
RESUMEN
Since its introduction in 2004, Knochel's so called Turbo-Grignard reagents revolutionized the usage of Grignard reagents. Through the simple addition of LiCl to a magnesium alkyl an outstanding increase in reactivity can be achieved. Though the exact composition of the reactive species remained mysterious, the reactive mixture itself is readily used not only in synthesis but also found its way into more distant fields like material science. To unravel this mystery, we combined single-crystal X-ray diffraction with in-solution NMR-spectroscopy and closed our investigations with quantum chemical calculations. Using such a variety of methods, we have gained insight into and an explanation for the extraordinary reactivity of this extremely convenient reagent by determining the structure of the first bimetallic reactive species [t-Bu2 Mg â LiCl â 4 thf] with two tert-butyl anions at the magnesium center and incorporated lithium chloride.