Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Pflugers Arch ; 476(1): 123-144, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37775569

RESUMEN

Intracellular Ca2+ ([Ca2+]i) signaling and catecholamine (CA) exocytosis from adrenal chromaffin cells (CCs) differ between mammalian species. These differences partly result from the different contributions of Ca2+-induced Ca2+-release (CICR) from internal stores, which boosts intracellular Ca2+ signals. Transient inhibition of the sarcoendoplasmic reticulum (SERCA) Ca2+ pump with cyclopiazonic acid (CPA) reduces CICR. Recently, Martínez-Ramírez et al. found that CPA had contrasting effects on catecholamine secretion and intracellular Ca2+ signals in mouse and bovine CCs, where it enhanced and inhibited exocytosis, respectively. After CPA withdrawal, exocytosis diminished in mouse CCs and increased in bovine CCs. These differences can be explained if mouse CCs have weak CICR and strong Ca2+ uptake, and the reverse is true for bovine CCs. Surprisingly, CPA slightly reduced the amplitude of Ca2+ signals in both mouse and bovine CCs. Here we examined the effects of CPA on stimulated CA exocytosis and Ca2+ signaling in rat CCs and investigated if it alters differently the responses of CCs from normotensive (WKY) or hypertensive (SHR) rats, which differ in the gain of CICR. Our results demonstrate that CPA application strongly inhibits voltage-gated exocytosis and Ca2+ transients in rat CCs, regardless of strain (SHR or WKY). Thus, despite the greater phylogenetic distance from the most recent common ancestors, suppression of endoplasmic reticulum (ER) Ca2+ uptake through CPA inhibits the CA secretion in rat CCs more similarly to bovine than mouse CCs, unveiling divergent evolutionary relationships in the mechanism of CA exocytosis of CCs between rodents. Agents that inhibit the SERCA pump, such as CPA, suppress catecholamine secretion equally well in WKY and SHR CCs and are not potential therapeutic agents for hypertension. Rat CCs display Ca2+ signals of varying widths. Some even show early and late Ca2+ components. Narrowing the Ca2+ transients by CPA and ryanodine suggests that the late component is mainly due to CICR. Simultaneous recordings of Ca2+ signaling and amperometry in CCs revealed the existence of a robust and predictable correlation between the kinetics of the whole-cell intracellular Ca2+ signal and the rate of exocytosis at the single-cell level.


Asunto(s)
Células Cromafines , Hipertensión , Ratas , Animales , Bovinos , Ratones , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Catecolaminas , Filogenia , Calcio/metabolismo , Células Cromafines/metabolismo , Señalización del Calcio , Exocitosis , Mamíferos/metabolismo
2.
Exp Cell Res ; 433(2): 113847, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37931771

RESUMEN

Hypertension is a multifactorial disease characterized by vascular and renal dysfunction, cardiovascular remodeling, inflammation, and fibrosis, all of which are associated with oxidative stress. We previously demonstrated cellular reactive oxygen species (ROS) imbalances may impact the structural and biochemical functions of blood cells and reported downregulation of ß-dystroglycan (ß-Dg) and overexpression of the epithelial sodium channel (ENaC) contribute to the pathophysiology of hypertension. In this study, we aimed to determine the expression of dystroglycans (Dg) and ENaC in platelet progenitors (megakaryocytes) and their surrounding niches. Thin sections of bone marrow from 5- and 28-week-old spontaneous hypertensive rats (SHR) were compared to age-matched normotensive rats (WKY). Cytometry and immunohistochemical assays demonstrated an oxidative environment in SHR bone marrow, characterized by high levels of myeloperoxidase and 3-nitrotyrosine and downregulation of peroxiredoxin II. In addition, transmission electron micrography and confocal microscopy revealed morphological changes in platelets and Mgks from SHR rats, including swollen mitochondria. Quantitative qRT-PCR assays confirmed downregulation of Dg mRNA and immunohistochemistry and western-blotting validated low expression of ß-Dg, mainly in the phosphorylated form, in Mgks from 28-week-old SHR rats. Moreover, we observed a progressive increase in ß-1 integrin expression in Mgks and extracellular matrix proteins in Mgk niches in SHR rats compared to WKY controls. These results indicate accumulation of ROS promotes oxidative stress within the bone marrow environment and detrimentally affects cellular homeostasis in hypertensive individuals.


Asunto(s)
Distroglicanos , Hipertensión , Ratas , Animales , Especies Reactivas de Oxígeno , Ratas Endogámicas SHR , Megacariocitos/metabolismo , Ratas Endogámicas WKY , Hipertensión/metabolismo
3.
J Am Soc Nephrol ; 34(1): 55-72, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36288902

RESUMEN

BACKGROUND: The calcium-sensing receptor (CaSR) in the distal convoluted tubule (DCT) activates the NaCl cotransporter (NCC). Glucose acts as a positive allosteric modulator of the CaSR. Under physiologic conditions, no glucose is delivered to the DCT, and fructose delivery depends on consumption. We hypothesized that glucose/fructose delivery to the DCT modulates the CaSR in a positive allosteric way, activating the WNK4-SPAK-NCC pathway and thus increasing salt retention. METHODS: We evaluated the effect of glucose/fructose arrival to the distal nephron on the CaSR-WNK4-SPAK-NCC pathway using HEK-293 cells, C57BL/6 and WNK4-knockout mice, ex vivo perfused kidneys, and healthy humans. RESULTS: HEK-293 cells exposed to glucose/fructose increased SPAK phosphorylation in a WNK4- and CaSR-dependent manner. C57BL/6 mice exposed to fructose or a single dose of dapagliflozin to induce transient glycosuria showed increased activity of the WNK4-SPAK-NCC pathway. The calcilytic NPS2143 ameliorated this effect, which was not observed in WNK4-KO mice. C57BL/6 mice treated with fructose or dapagliflozin showed markedly increased natriuresis after thiazide challenge. Ex vivo rat kidney perfused with glucose above the physiologic threshold levels for proximal reabsorption showed increased NCC and SPAK phosphorylation. NPS2143 prevented this effect. In healthy volunteers, cinacalcet administration, fructose intake, or a single dose of dapagliflozin increased SPAK and NCC phosphorylation in urinary extracellular vesicles. CONCLUSIONS: Glycosuria or fructosuria was associated with increased NCC, SPAK, and WNK4 phosphorylation in a CaSR-dependent manner.


Asunto(s)
Glucosuria , Simportadores del Cloruro de Sodio , Humanos , Ratones , Animales , Simportadores del Cloruro de Sodio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Sensibles al Calcio/metabolismo , Glucosa/metabolismo , Células HEK293 , Ratones Endogámicos C57BL , Fosforilación , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Túbulos Renales Distales/metabolismo , Ratones Noqueados , Glucosuria/metabolismo
4.
FASEB J ; 35(6): e21478, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33991146

RESUMEN

Sperm capacitation is essential to gain fertilizing capacity. During this process, a series of biochemical and physiological modifications occur that allow sperm to undergo acrosomal exocytosis (AE). At the molecular level, hyperpolarization of the sperm membrane potential (Em) takes place during capacitation. This study shows that human sperm incubated under conditions that do not support capacitation (NC) can become ready for an agonist stimulated AE by pharmacologically inducing Em hyperpolarization with Valinomycin or Amiloride. To investigate how Em hyperpolarization promotes human sperm's ability to undergo AE, live single-cell imaging experiments were performed to simultaneously monitor changes in [Ca2+ ]i and the occurrence of AE. Em hyperpolarization turned [Ca2+ ]i dynamics in NC sperm from spontaneously oscillating into a sustained slow [Ca2+ ]i increase. The addition of progesterone (P4) or K+ to Valinomycin-treated sperm promoted that a significant number of cells displayed a transitory rise in [Ca2+ ]i which then underwent AE. Altogether, our results demonstrate that Em hyperpolarization is necessary and sufficient to prepare human sperm for the AE. Furthermore, this Em change decreased Ca2+ oscillations that block the occurrence of AE, providing strong experimental evidence of the molecular mechanism that drives the acquisition of acrosomal responsiveness.


Asunto(s)
Reacción Acrosómica , Señalización del Calcio , Exocitosis , Potenciales de la Membrana , Capacitación Espermática , Espermatozoides/fisiología , Humanos , Masculino , Fosforilación
5.
FASEB J ; 35(4): e21528, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33742713

RESUMEN

We have recently reported two different methodologies that improve sperm functionality. The first method involved transient exposure to the Ca2+ ionophore A23187 , and the second required sperm incubation in the absence of energy nutrients (starvation). Both methods were associated with an initial loss of motility followed by a rescue step involving ionophore removal or addition of energy metabolites, respectively. In this work, we show that starvation is accompanied by an increase in intracellular Ca2+ ([Ca2+ ]i ). Additionally, the starved cells acquire a significantly enhanced capacity to undergo a progesterone-induced acrosome reaction. Electrophysiological measurements show that CatSper channel remains active in starvation conditions. However, the increase in [Ca2+ ]i was also observed in sperm from CatSper null mice. Upon starvation, addition of energy nutrients reversed the effects on [Ca2+ ]i and decreased the effect of progesterone on the acrosome reaction to control levels. These data indicate that both methods have common molecular features.


Asunto(s)
Calcio/metabolismo , Progesterona/farmacología , Capacitación Espermática/efectos de los fármacos , Inanición/metabolismo , Reacción Acrosómica/efectos de los fármacos , Animales , Canales de Calcio/metabolismo , Membrana Celular/metabolismo , Femenino , Masculino , Ratones , Progesterona/metabolismo , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo
6.
Exp Cell Res ; 402(2): 112577, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33811902

RESUMEN

Cellular heterogeneity and diversity are recognized to contribute to the functions of neutrophils under homeostatic and pathological conditions. We previously suggested that the chronic inflammatory responses associated with hypertension (HTN) are related to the participation of different subpopulations of neutrophils. Two populations of neutrophils can be obtained by density gradient centrifugation: normal-density neutrophils (NDN) and low-density neutrophils (LDN). However, the lack of standardized functional protocols has limited phenotypic characterization and functional comparisons of LDN and NDN. Based on their capability to incorporate Na+, maturity and activation stage, we characterized NDN and LDN in blood samples from ten patients with HTN and ten healthy individuals (HI) using flow cytometry. We compared the levels of reactive oxygen species (ROS), generation of neutrophil extracellular traps (NETs) and levels of apoptosis in NDN and LDN. In general, the NDN and LDN subpopulations from patients with HTN exhibited higher levels of sodium influx and ROS, and lower levels of apoptosis than the corresponding NDN and LDN subsets from HI. Transmission electron microscopy revealed NDN and LDN from patients with HTN exhibited alterations to mitochondrial morphology and fewer cytoplasmic granules than the corresponding HI subpopulations. Our results indicate both the NDN and LDN subpopulations enhance the effects of inflammation that contribute to the pathophysiology of HTN. Further detailed studies are required to characterize the events during ontogeny of the myeloid lineage that result in the diverse phenotypic characteristics of each subpopulation of LDN and NDN.


Asunto(s)
Heterogeneidad Genética , Inflamación/sangre , Neutrófilos/ultraestructura , Hipertensión Arterial Pulmonar/sangre , Adulto , Apoptosis/genética , Trampas Extracelulares/genética , Citometría de Flujo , Humanos , Inflamación/patología , Masculino , Neutrófilos/metabolismo , Neutrófilos/patología , Hipertensión Arterial Pulmonar/patología , Especies Reactivas de Oxígeno/metabolismo
7.
Pflugers Arch ; 473(11): 1775-1793, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34510285

RESUMEN

The hypersecretory phenotype of adrenal chromaffin cells (CCs) from early spontaneously hypertensive rats (SHRs) mainly results from enhanced Ca2+-induced Ca2+-release (CICR). A key question is if these abnormalities can be traced to the prehypertensive stage. Spontaneous and stimulus-induced catecholamine exocytosis, intracellular Ca2+ signals, and dense-core granule size and density were examined in CCs from prehypertensive and hypertensive SHRs and compared with age-matched Wistar-Kyoto rats (WKY). During the prehypertensive stage, the depolarization-elicited catecholamine exocytosis was ~ 2.9-fold greater in SHR than in WKY CCs. Interestingly, in half of CCs the exocytosis was indistinguishable from WKY CCs, while it was between 3- and sixfold larger in the other half. Likewise, caffeine-induced exocytosis was ~ twofold larger in prehypertensive SHR. Accordingly, depolarization and caffeine application elicited [Ca2+]i rises ~ 1.5-fold larger in prehypertensive SHR than in WKY CCs. Ryanodine reduced the depolarization-induced secretion in prehypertensive SHR by 57%, compared to 14% in WKY CCs, suggesting a greater contribution of intracellular Ca2+ release to exocytosis. In SHR CCs, the mean spike amplitude and charge per spike were significantly larger than in WKY CCs, regardless of age and stimulus type. This difference in granule content could explain in part the enhanced exocytosis in SHR CCs. However, electron microscopy did not reveal significant differences in granule size between SHRs and WKY rats' adrenal medulla. Nonetheless, preSHR and hypSHR display 63% and 82% more granules than WKY, which could explain in part the enhanced catecholamine secretion. The mechanism responsible for the heterogeneous population of prehypertensive SHR CCs and the bias towards secreting more medium and large granules remains unexplained.


Asunto(s)
Células Cromafines/fisiología , Hipertensión/fisiopatología , Animales , Calcio/metabolismo , Catecolaminas/metabolismo , Células Cromafines/metabolismo , Exocitosis/fisiología , Hipertensión/metabolismo , Masculino , Fenotipo , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Rianodina/metabolismo
8.
FASEB J ; 34(12): 16622-16644, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33131132

RESUMEN

Glutamate N-methyl-D-aspartate (NMDA) receptor (NMDAR) is critical for neurotransmission as a Ca2+ channel. Nonetheless, flux-independent signaling has also been demonstrated. Astrocytes express NMDAR distinct from its neuronal counterpart, but cultured astrocytes have no electrophysiological response to NMDA. We recently demonstrated that in cultured astrocytes, NMDA at pH6 (NMDA/pH6) acting through the NMDAR elicits flux-independent Ca2+ release from the Endoplasmic Reticulum (ER) and depletes mitochondrial membrane potential (mΔΨ). Here we show that Ca2+ release is due to pH6 sensing by NMDAR, whereas mΔΨ depletion requires both: pH6 and flux-dependent NMDAR signaling. Plasma membrane (PM) NMDAR guard a non-random distribution relative to the ER and mitochondria. Also, NMDA/pH6 induces ER stress, endocytosis, PM electrical capacitance reduction, mitochondria-ER, and -nuclear contacts. Strikingly, it also produces the formation of PM invaginations near mitochondria along with structures referred to here as PM-mitochondrial bridges (PM-m-br). These and earlier data strongly suggest PM-mitochondria communication. As proof of the concept of mass transfer, we found that NMDA/pH6 provoked mitochondria labeling by the PM dye FM-4-64FX. NMDA/pH6 caused PM depolarization, cell acidification, and Ca2+ release from most mitochondria. Finally, the MCU and microtubules were not involved in mΔΨ depletion, while actin cytoskeleton was partially involved. These findings demonstrate that NMDAR has concomitant flux-independent and flux-dependent actions in cultured astrocytes.


Asunto(s)
Astrocitos/metabolismo , Membrana Celular/metabolismo , Mitocondrias/metabolismo , N-Metilaspartato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Hipocampo/metabolismo , Concentración de Iones de Hidrógeno , Potencial de la Membrana Mitocondrial/fisiología , Neuronas/metabolismo , Ratas , Transducción de Señal/fisiología
9.
Eur J Neurosci ; 49(11): 1512-1528, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30633847

RESUMEN

For more than three decades it has been known, that striatal neurons become hyperactive after the loss of dopamine input, but the involvement of dopamine (DA) D1- or D2-receptor-expressing neurons has only been demonstrated indirectly. By recording neuronal activity using fluorescent calcium indicators in D1 or D2 eGFP-expressing mice, we showed that following dopamine depletion, both types of striatal output neurons are involved in the large increase in neuronal activity generating a characteristic cell assembly of particular neurons that dominate the pattern. When we expressed channelrhodopsin in all the output neurons, light activation in freely moving animals, caused turning like that following dopamine loss. However, if the light stimulation was patterned in pulses the animals circled in the other direction. To explore the neuronal participation during this stimulation we infected normal mice with channelrhodopsin and calcium indicator in striatal output neurons. In slices made from these animals, continuous light stimulation for 15 s induced many cells to be active together and a particular dominant group of neurons, whereas light in patterned pulses activated fewer cells in more variable groups. These results suggest that the simultaneous activity of a large dominant group of striatal output neurons is intimately associated with parkinsonian symptoms.


Asunto(s)
Ganglios Basales/metabolismo , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson Secundaria/metabolismo , Animales , Calcio/metabolismo , Masculino , Ratones , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
10.
Biol Reprod ; 100(4): 1018-1034, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30496339

RESUMEN

The estrous cycle is an iterative change in the anatomy, endocrinology, physiology, and behavior to provide maximum fecundity. Ovarian steroid production involves gonadotropin-induced [Ca2+]i raises due in part to voltage-gated Ca2+ channels (VGCCs) whose identity and tissue distribution in situ is largely unknown. Using fluorescence Ca2+ imaging and confocal microscopy, we recorded both spontaneous and depolarization-induced Ca2+ signals in living mouse ovarian slices. They were most prominent in theca cells (TCs) and oocytes. The presence of Ca2+ channel subunits CaV 1.2, CaV 1.3, CaV 2.1, CaV 2.2, and CaV 3 was examined with immunofluorescence of ovarian sections. CaV 1.2 and CaV 1.3 (L-type Ca2+ channels) are present in the stroma, granulosa cells (GCs), and corpora lutea (CL). Intriguingly subunits that are characteristic of nerve cells are also expressed: P/Q-type (CaV 2.1; α1A) in the stroma and CL cells and N-type (CaV 2.2; α1B) in perifollicular smooth muscle cells. The expression of α1 subunits fluctuates along the estrous cycle: in metestrus-diestrus (the quiescent stage of the cycle), CL and GCs are similarly stained, while in proestrus (stage of maximal ovarian stimulation) CL staining increases relatively to GCs. Also in proestrus, CaV 3 Ca2+ channel subunits are expressed more in CL compared to GC suggesting a more significant role of Ca2+ channels. In estrus, CaV 3 subunits from mesenchymal and interfollicular stromal cells become intensely stained. Our study represents an important step in understanding the role of VGCCs in ovarian physiology and possibly in ovarian cancer and other reproductive pathologies.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Ciclo Estral/fisiología , Ovario/metabolismo , Animales , Calcio/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Ratones , Folículo Ovárico/metabolismo
11.
Pflugers Arch ; 470(1): 67-77, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29101464

RESUMEN

The role of gamma-aminobutyric acid (GABA) in adrenal medulla chromaffin cell (CC) function is just beginning to unfold. GABA is stored in catecholamine (CA)-containing dense core granules and is presumably released together with CA, ATP, and opioids in response to physiological stimuli, playing an autocrine-paracrine role on CCs. The reported paradoxical "dual action" of GABAA-R activation (enhancement of CA secretion and inhibition of synaptically evoked CA release) is only one aspect of GABA's multifaceted actions. In this review, we discuss recent physiological experiments on rat CCs in situ which suggest that GABA regulation of CC function may depend on the physiological context: During non-stressful conditions, GABAA-R activation by endogenous GABA tonically inhibits acetylcholine release from splanchnic nerve terminals and decreases spontaneous Ca2+ fluctuations in CCs, preventing unwanted CA secretion. During intense stress, splanchnic nerve terminals release acetylcholine, which depolarizes CCs and allows the Ca2+ influx that triggers the release of CA and GABA. With time, CA secretion declines, due to voltage-independent inhibition of Ca2+channels and desensitization of cholinergic nicotinic receptors. Nonetheless, acute activation of GABAA-R is depolarizing in about 50% of CCs, and thus GABA, acting as an autocrine/paracrine mediator, could help to maintain CA exocytosis under stress. GABAA-R activation is not excitatory in about half of CCs' population because it hyperpolarizes them or elicits no response. This percentage possibly varies, depending on functional demands, since GABAA-R-mediated actions are determined by the intracellular chloride concentration ([Cl-] i ) and therefore on the activity of cation-chloride co transporters, which is functionally regulated. These findings underscore a potential importance of a novel and complex GABA-mediated regulation of CC function and of CA secretion.


Asunto(s)
Señalización del Calcio , Catecolaminas/metabolismo , Células Cromafines/metabolismo , Receptores de GABA-A/metabolismo , Transmisión Sináptica , Animales , Células Cromafines/fisiología , Ratas
12.
Anal Chem ; 90(14): 8331-8336, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29916698

RESUMEN

Intracellular signaling pathways are affected by the temporal nature of external chemical signaling molecules such as neurotransmitters or hormones. Developing high-throughput technologies to mimic these time-varying chemical signals and to analyze the response of single cells would deepen our understanding of signaling networks. In this work, we introduce a microfluidic platform to stimulate hundreds of single cells with chemical waveforms of tunable frequency and amplitude. Our device produces a linear gradient of 9 concentrations that are delivered to an equal number of chambers, each containing 492 microwells, where individual cells are captured. The device can alternate between the different stimuli concentrations and a control buffer, with a maximum operating frequency of 33 mHz that can be adjusted from a computer. Fluorescent time-lapse microscopy enables to obtain hundreds of thousands of data points from one experiment. We characterized the gradient performance and stability by staining hundreds of cells with calcein AM. We also assessed the capacity of our device to introduce periodic chemical stimuli of different amplitudes and frequencies. To demonstrate our device performance, we studied the dynamics of intracellular Ca2+ release from intracellular stores of HEK cells when stimulated with carbachol at 4.5 and 20 mHz. Our work opens the possibility of characterizing the dynamic responses in real time of signaling molecules to time-varying chemical stimuli with single cell resolution.


Asunto(s)
Calcio/metabolismo , Ensayos Analíticos de Alto Rendimiento/instrumentación , Dispositivos Laboratorio en un Chip , Análisis de la Célula Individual/instrumentación , Calcio/análisis , Carbacol/farmacología , Cardiotónicos/farmacología , Diseño de Equipo , Fluoresceínas/análisis , Fluoresceínas/metabolismo , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/metabolismo , Células HEK293 , Humanos , Microscopía Fluorescente/métodos
14.
Neurobiol Dis ; 91: 347-61, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26951948

RESUMEN

A challenge in neuroscience is to integrate the cellular and system levels. For instance, we still do not know how a few dozen neurons organize their activity and relations in a microcircuit or module of histological scale. By using network theory and Ca(2+) imaging with single-neuron resolution we studied the way in which striatal microcircuits of dozens of cells orchestrate their activity. In addition, control and diseased striatal tissues were compared in rats. In the control tissue, functional connectomics revealed small-world, scale-free and hierarchical network properties. These properties were lost during pathological conditions in ways that could be quantitatively analyzed. Decorticated striatal circuits disclosed that corticostriatal interactions depend on privileged connections with a set of highly connected neurons or "hubs". In the 6-OHDA model of Parkinson's disease there was a decrease in hubs number; but the ones that remained were linked to dominant network states. l-DOPA induced dyskinesia provoked a loss in the hierarchical structure of the circuit. All these conditions conferred distinct temporal sequences to circuit activity. Temporal sequences appeared as particular signatures of disease process thus bringing the possibility of a future quantitative pathophysiology at a histological scale.


Asunto(s)
Antiparkinsonianos/farmacología , Cuerpo Estriado/patología , Discinesia Inducida por Medicamentos/patología , Red Nerviosa/fisiopatología , Neuronas/efectos de los fármacos , Trastornos Parkinsonianos/patología , Animales , Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Red Nerviosa/patología , Neuroimagen , Neuronas/patología , Trastornos Parkinsonianos/tratamiento farmacológico , Ratas Wistar
15.
Biol Reprod ; 94(3): 63, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26819478

RESUMEN

During capacitation, sperm acquire the ability to undergo the acrosome reaction (AR), an essential step in fertilization. Progesterone produced by cumulus cells has been associated with various physiological processes in sperm, including stimulation of AR. An increase in intracellular Ca(2+) ([Ca(2+)]i) is necessary for AR to occur. In this study, we investigated the spatiotemporal correlation between the changes in [Ca(2+)]i and AR in single mouse spermatozoa in response to progesterone. We found that progesterone stimulates an [Ca(2+)]i increase in five different patterns: gradual increase, oscillatory, late transitory, immediate transitory, and sustained. We also observed that the [Ca(2+)]i increase promoted by progesterone starts at either the flagellum or the head. We validated the use of FM4-64 as an indicator for the occurrence of the AR by simultaneously detecting its fluorescence increase and the loss of EGFP in transgenic EGFPAcr sperm. For the first time, we have simultaneously visualized the rise in [Ca(2+)]i and the process of exocytosis in response to progesterone and found that only a specific transitory increase in [Ca(2+)]i originating in the sperm head promotes the initiation of AR.


Asunto(s)
Reacción Acrosómica/efectos de los fármacos , Calcio/metabolismo , Progesterona/farmacología , Espermatozoides/efectos de los fármacos , Animales , Masculino , Ratones , Ratones Transgénicos , Compuestos de Piridinio , Compuestos de Amonio Cuaternario , Espermatozoides/fisiología
16.
Pflugers Arch ; 467(11): 2307-23, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25791627

RESUMEN

Adrenal chromaffin cells (CCs) from spontaneously hypertensive rats (SHRs) secrete more catecholamine (CA) upon stimulation than CCs from normotensive Wistar Kyoto rats (WKY). Unitary CA exocytosis events, both spontaneous and stimulated, were amperometrically recorded from cultured WKY and SHR CCs. Both strains display spontaneous amperometric spikes but SHR CCs produce more spikes and of higher mean amplitude. After a brief stimulation with high K(+) or caffeine which produces voltage-gated Ca(2+) influx or intracellular Ca(2+) release, respectively, more spikes and of greater mean amplitude and unitary charge were recorded in SHR CCs. Consequently, peak cumulative charge was ~2-fold higher in SHR CCs. Ryanodine (10 µM), a specific blocker of the ryanodine receptors reduced depolarization-induced peak cumulative charge by ~10 % in WKY and ~77 % in SHR CCs, suggesting, a larger contribution of Ca(2+)-induced Ca(2+) release to CA exocytosis in SHR CCs. Accordingly, Ca(2+) imaging showed larger [Ca(2+)]i signals induced both by depolarization and caffeine in SHR CCs. Distribution amplitude histograms showed that small amperometric spikes (0-50 pA) are more frequent in WKY than in SHR CCs. Conversely, medium (50-190 pA) and large (190-290 pA) spikes are more numerous in SHR than in WKY CCs. This study reveals that the enhanced CA secretion in SHR CCs results from a combination of (1) larger depolarization-induced Ca(2+) transients, due to a greater Ca(2+)-induced intracellular Ca(2+) release, (2) more exocytosis events per time unit, and (3) a greater proportion of medium and large amperometric spikes probably due to a higher mean CA content per granule. Enhanced CA release by excessive amplification by Ca(2+) induced Ca(2+) release and larger granule catecholamine content contributes to the increased CA plasma levels and vasomotor tone in SHRs.


Asunto(s)
Glándulas Suprarrenales/metabolismo , Señalización del Calcio/efectos de los fármacos , Calcio/metabolismo , Calcio/farmacología , Catecolaminas/metabolismo , Células Cromafines/metabolismo , Glándulas Suprarrenales/efectos de los fármacos , Animales , Presión Sanguínea/efectos de los fármacos , Cafeína/farmacología , Células Cultivadas , Células Cromafines/efectos de los fármacos , Exocitosis , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Inhibidores de Fosfodiesterasa/farmacología , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Rianodina/farmacología , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos
17.
J Neurochem ; 133(4): 511-21, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25683177

RESUMEN

We characterized the ionic currents underlying the cellular excitability and the Ca(2+) -channel subtypes involved in action potential (AP) firing of rat adrenal chromaffin cells (RCCs) preserved in their natural environment, the adrenal gland slices, through the perforated patch-clamp recording technique. RCCs prepared from adrenal slices exhibit a resting potential of -54 mV, firing spontaneous APs (2-3 spikes/s) generated by the opening of Na(+) and Ca(2+) -channels, and terminated by the activation of voltage and Ca(2+) -activated K(+) -channels (BK). Ca(2+) influx via L-type Ca(2+) -channels is involved in reaching threshold potential for AP firing, and is responsible for activation of BK-channels contributing to AP-repolarization and afterhyperpolarization, whereas P/Q-type Ca(2+) -channels are involved only in the repolarization phase. BK-channels carry total outward current during AP-repolarization. Blockade of L-type Ca(2+) -channels reduces BK-current ~60%, whereas blockade of N- or P/Q-type produces little effect. This study demonstrates that Ca(2+) influx through L-type Ca(2+) -channels plays a key role in modulating the threshold potential from RCCs in situ. This study demonstrates that Ca(2+) influx through L-type Ca(2+) channels plays a key role in modulating the threshold potential for action potential firing and activating BK channels contributing to repolarization and afterhyperpolarization from rat adrenal chromaffin cells in situ.


Asunto(s)
Potenciales de Acción/fisiología , Glándulas Suprarrenales/citología , Canales de Calcio/fisiología , Calcio/metabolismo , Células Cromafines/fisiología , Estimulación Eléctrica , Potenciales de Acción/efectos de los fármacos , Animales , Fenómenos Biofísicos/efectos de los fármacos , Biofisica , Cloruro de Cadmio/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Células Cromafines/efectos de los fármacos , Técnicas In Vitro , Masculino , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Ratas , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/farmacología , Tetraetilamonio/farmacología , Tetrodotoxina/farmacología
18.
Pflugers Arch ; 466(4): 819-31, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24595474

RESUMEN

Cell function is importantly regulated by the intracellular concentration of Ca(2+) ([Ca(2+)]i). Sperm development and function are deeply influenced by [Ca(2+)]i which is modulated amongst other ion transporters by plasma membrane Ca(2+) permeable channels. The presence and role of voltage-dependent Ca(2+) channels (CaV) of the T-type (CaV3) in sperm physiology have become a matter of debate in recent years. Though they are functionally present in later stages of development in spermatogenic cells and testicular sperm and their mRNAs and proteins detected from spermatogenic cells to mature mammalian spermatozoa, their currents have not been recorded in mature spermatozoa. This review critically summarizes the evidence for the involvement of CaV3 channels in sperm development and function.


Asunto(s)
Canales de Calcio Tipo T/fisiología , Motilidad Espermática/fisiología , Espermatocitos/fisiología , Espermatogénesis/fisiología , Espermatozoides/fisiología , Animales , Humanos , Masculino , Espermatozoides/crecimiento & desarrollo
19.
Biol Reprod ; 91(3): 67, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25100708

RESUMEN

The spermatozoa acrosome reaction (AR) is essential for mammalian fertilization. Few methods allow visualization of AR in real time together with Ca²âº imaging. Here, we show that FM4-64, a fluorescent dye used to follow exocytosis, reliably reports AR progression induced by ionomycin and progesterone in human spermatozoa. FM4-64 clearly delimits the spermatozoa contour and reports morphological cell changes before, during, and after AR. This strategy unveiled the formation of moving tubular appendages, emerging from acrosome-reacted spermatozoa, which was confirmed by scanning electron microscopy. Alternate wavelength illumination allowed concomitant imaging of FM4-64 and Fluo-4, a Ca²âº indicator. These AR and intracellular Ca²âº ([Ca²âº]i) recordings revealed that the presence of [Ca²âº]i oscillations, both spontaneous and progesterone induced, prevents AR in human spermatozoa. Notably, the progesterone-induced AR is preceded by a second [Ca²âº]i peak and ~40% of reacting spermatozoa also manifest a slow [Ca²âº]i rise ~2 min before AR. Our findings uncover new AR features related to [Ca²âº]i.


Asunto(s)
Reacción Acrosómica , Señalización del Calcio , Análisis de Semen/métodos , Espermatozoides/fisiología , Reacción Acrosómica/efectos de los fármacos , Compuestos de Anilina/química , Ionóforos de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Extensiones de la Superficie Celular/efectos de los fármacos , Extensiones de la Superficie Celular/fisiología , Extensiones de la Superficie Celular/ultraestructura , Supervivencia Celular/efectos de los fármacos , Femenino , Colorantes Fluorescentes/química , Humanos , Ionomicina/farmacología , Cinética , Masculino , Microscopía Electrónica de Rastreo , Progesterona/metabolismo , Compuestos de Piridinio/química , Compuestos de Amonio Cuaternario/química , Análisis de la Célula Individual , Espermatozoides/efectos de los fármacos , Espermatozoides/ultraestructura , Xantenos/química
20.
Gen Physiol Biophys ; 33(1): 29-41, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24334530

RESUMEN

The hormone leptin, by binding to hypothalamic receptors, suppresses food intake and decreases body adiposity. Leptin receptors are also widely expressed in extra-hypothalamic areas such as hippocampus, amygdala and cerebellum, where leptin modulates synaptic transmission. Here we show that a defective leptin receptor affects the electrophysiological properties of cerebellar Purkinje neurons (PNs). PNs from (db/db) mice recorded in cerebellar slices display a higher firing rate of spontaneous action potentials than PNs from wild type (WT) mice. Blockade of GABAergic tonic inhibition with bicuculline in WT mice changes the firing pattern from continuous, uninterrupted spiking into bursting firing, but bicuculline does not produce these alterations in db/db neurons, suggesting that they receive a weaker GABAergic inhibitory input. Our results also show that the intrinsic firing properties (auto-rhythmicity) of WT and db/db PNs are different. Tonic firing of PNs, the only efferent output from the cerebellar cortex, is a persistent signal to downstream cerebellar targets. The significance of leptin modulation of PNs spontaneous firing is not known. Also, it is not clear if the increased excitability of cerebellar PNs in db/db mice results from hyperglycemia or from the lack of leptin signaling, since both conditions coexist in the db/db strain.


Asunto(s)
Potenciales de Acción , Leptina/metabolismo , Neuronas/metabolismo , Células de Purkinje/metabolismo , Receptores de GABA-A/fisiología , Receptores de Leptina/genética , Transmisión Sináptica , Animales , Bicuculina/química , Cerebelo/fisiología , Electrofisiología/métodos , Antagonistas de Receptores de GABA-A/química , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Destreza Motora , Periodicidad , Receptores de GABA-A/efectos de los fármacos , Receptores de Leptina/fisiología , Transducción de Señal , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA