Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 21(6): 341-352, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32300252

RESUMEN

Epithelial-mesenchymal transition (EMT) encompasses dynamic changes in cellular organization from epithelial to mesenchymal phenotypes, which leads to functional changes in cell migration and invasion. EMT occurs in a diverse range of physiological and pathological conditions and is driven by a conserved set of inducing signals, transcriptional regulators and downstream effectors. With over 5,700 publications indexed by Web of Science in 2019 alone, research on EMT is expanding rapidly. This growing interest warrants the need for a consensus among researchers when referring to and undertaking research on EMT. This Consensus Statement, mediated by 'the EMT International Association' (TEMTIA), is the outcome of a 2-year-long discussion among EMT researchers and aims to both clarify the nomenclature and provide definitions and guidelines for EMT research in future publications. We trust that these guidelines will help to reduce misunderstanding and misinterpretation of research data generated in various experimental models and to promote cross-disciplinary collaboration to identify and address key open questions in this research field. While recognizing the importance of maintaining diversity in experimental approaches and conceptual frameworks, we emphasize that lasting contributions of EMT research to increasing our understanding of developmental processes and combatting cancer and other diseases depend on the adoption of a unified terminology to describe EMT.


Asunto(s)
Investigación Biomédica/normas , Transición Epitelial-Mesenquimal , Animales , Movimiento Celular , Plasticidad de la Célula , Consenso , Biología Evolutiva/normas , Humanos , Neoplasias/patología , Terminología como Asunto
3.
EMBO Rep ; 24(4): e54895, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36704936

RESUMEN

Colon tumors of the mesenchymal subtype have the lowest overall survival. Snail1 is essential for the acquisition of this phenotype, characterized by increased tumor stemness and invasion, and high resistance to chemotherapy. Here, we find that Snail1 expression in colon tumor cells is dependent on an autocrine noncanonical Wnt pathway. Accordingly, depletion of Ror2, the co-receptor for noncanonical Wnts such as Wnt5a, potently decreases Snail1 expression. Wnt5a, Ror2, and Snail1 participate in a self-stimulatory feedback loop since Wnt5a increases its own synthesis in a Ror2- and Snail1-dependent fashion. This Wnt5a/Ror2/Snail1 axis controls tumor invasion, chemoresistance, and formation of tumor spheres. It also stimulates TGFß synthesis; consequently, tumor cells expressing Snail1 are more efficient in activating cancer-associated fibroblasts than the corresponding controls. Ror2 downmodulation or inhibition of the Wnt5a pathway decreases Snail1 expression in primary colon tumor cells and their ability to form tumors and liver metastases. Finally, the expression of SNAI1, ROR2, and WNT5A correlates in human colon and other tumors. These results identify inhibition of the noncanonical Wnt pathway as a putative colon tumor therapy.


Asunto(s)
Neoplasias del Colon , Vía de Señalización Wnt , Humanos , Resistencia a Antineoplásicos/genética , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Fibroblastos
4.
Breast Cancer Res ; 25(1): 143, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964360

RESUMEN

BACKGROUND: As in most solid cancers, the emergence of cells with oncogenic mutations in the mammary epithelium alters the tissue homeostasis. Some soluble factors, such as TGFß, potently modify the behavior of healthy stromal cells. A subpopulation of cancer-associated fibroblasts expressing a TGFß target, the SNAIL1 transcription factor, display myofibroblastic abilities that rearrange the stromal architecture. Breast tumors with the presence of SNAIL1 in the stromal compartment, and with aligned extracellular fiber, are associated with poor survival prognoses. METHODS: We used deep RNA sequencing and biochemical techniques to study alternative splicing and human tumor databases to test for associations (correlation t-test) between SNAIL1 and fibronectin isoforms. Three-dimensional extracellular matrices generated from fibroblasts were used to study the mechanical properties and actions of the extracellular matrices on tumor cell and fibroblast behaviors. A metastatic mouse model of breast cancer was used to test the action of fibronectin isoforms on lung metastasis. RESULTS: In silico studies showed that SNAIL1 correlates with the expression of the extra domain A (EDA)-containing (EDA+) fibronectin in advanced human breast cancer and other types of epithelial cancers. In TGFß-activated fibroblasts, alternative splicing of fibronectin as well as of 500 other genes was modified by eliminating SNAIL1. Biochemical analyses demonstrated that SNAIL1 favors the inclusion of the EDA exon by modulating the activity of the SRSF1 splicing factor. Similar to Snai1 knockout fibroblasts, EDA- fibronectin fibroblasts produce an extracellular matrix  that does not sustain TGFß-induced fiber organization, rigidity, fibroblast activation, or tumor cell invasion. The presence of EDA+ fibronectin changes the action of metalloproteinases on fibronectin fibers. Critically, in an mouse orthotopic breast cancer model, the absence of the fibronectin EDA domain completely prevents lung metastasis. CONCLUSIONS: Our results support the requirement of EDA+ fibronectin in the generation of a metastasis permissive stromal architecture in breast cancers and its molecular control by SNAIL1. From a pharmacological point of view, specifically blocking EDA+ fibronectin deposition could be included in studies to reduce the formation of a pro-metastatic environment.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Animales , Femenino , Humanos , Ratones , Empalme Alternativo , Neoplasias de la Mama/genética , Fibronectinas/genética , Fibronectinas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
5.
Mol Cell ; 58(5): 755-66, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-25959397

RESUMEN

Protein function is often regulated and controlled by posttranslational modifications, such as oxidation. Although oxidation has been mainly considered to be uncontrolled and nonenzymatic, many enzymatic oxidations occur on enzyme-selected lysine residues; for instance, LOXL2 oxidizes lysines by converting the ε-amino groups into aldehyde groups. Using an unbiased proteomic approach, we have identified methylated TAF10, a member of the TFIID complex, as a LOXL2 substrate. LOXL2 oxidation of TAF10 induces its release from its promoters, leading to a block in TFIID-dependent gene transcription. In embryonic stem cells, this results in the inactivation of the pluripotency genes and loss of the pluripotent capacity. During zebrafish development, the absence of LOXL2 resulted in the aberrant overexpression of the neural progenitor gene Sox2 and impaired neural differentiation. Thus, lysine oxidation of the transcription factor TAF10 is a controlled protein modification and demonstrates a role for protein oxidation in regulating pluripotency genes.


Asunto(s)
Aminoácido Oxidorreductasas/fisiología , Diferenciación Celular , Células-Madre Neurales/fisiología , Procesamiento Proteico-Postraduccional , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/fisiología , Animales , Epigénesis Genética , Células HEK293 , Humanos , Metilación , Oxidación-Reducción , Factor de Transcripción TFIID/metabolismo , Pez Cebra
6.
Mol Cell ; 53(3): 444-57, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24412065

RESUMEN

The Wnt canonical ligands elicit the activation of ß-catenin transcriptional activity, a response dependent on, but not limited to, ß-catenin stabilization through the inhibition of GSK3 activity. Two mechanisms have been proposed for this inhibition, one dependent on the binding and subsequent block of GSK3 to LRP5/6 Wnt coreceptor and another one on its sequestration into multivesicular bodies (MVBs). Here we report that internalization of the GSK3-containing Wnt-signalosome complex into MVBs is dependent on the dissociation of p120-catenin/cadherin from this complex. Disruption of cadherin-LRP5/6 interaction is controlled by cadherin phosphorylation and requires the previous separation of p120-catenin; thus, p120-catenin and cadherin mutants unable to dissociate from the complex block GSK3 sequestration into MVBs. These mutants substantially inhibit, but do not completely prevent, the ß-catenin upregulation caused by Wnt3a. These results, besides elucidating how GSK3 is sequestered into MVBs, support this mechanism as cause of ß-catenin stabilization by Wnt.


Asunto(s)
Cadherinas/fisiología , Cateninas/fisiología , Glucógeno Sintasa Quinasa 3/metabolismo , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Cuerpos Multivesiculares/metabolismo , Vía de Señalización Wnt , Animales , Cadherinas/metabolismo , Cateninas/metabolismo , Caveolinas/metabolismo , Células HEK293 , Humanos , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/análisis , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/análisis , Ratones , Fosforilación , Proteína Wnt3A/metabolismo , Proteína Wnt3A/fisiología , Catenina delta
7.
Rep Pract Oncol Radiother ; 27(5): 905-913, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523812

RESUMEN

Background: Salvage surgery is considered an option for isolated recurrences of retroperitoneal and pelvic tumors, in patients who have undergone previous radiotherapy. In order to increase local control intra operative electron radiation therapy (IOERT) can be used in these patients to administer additional radiation dose. We evaluated the outcomes and adverse effects in patients with retroperitoneal sarcoma and gynecologic tumors after salvage surgery and IOERT. Materials and methods: Twenty patients were retrospectively analyzed. Twenty-three IOERT treatments were performed after surgery. Six (30%) were sarcoma and 14 (70%) were gynecological carcinoma. Administered dose depended on previous dose received with external beam radiotherapy (EBRT) and proximity to critical structures. The toxicities were scored using the Common Terminology Criteria for Adverse Events version 4.0. Results: The median age of the patients was 51 years (range 34-70). After a median follow-up of 32 months (range 1-68), in the sarcoma group the local control rate was 66.6%; while in the gynecological group the local control rate was 64.3%. In relation to late toxicity, one patient had a Grade 2 vesicovaginal fistula, and one patient presented Grade 4 enterocolitis and enteric intestinal fistula. Conclusions: IOERT could have a role in the treatment of retroperitoneal sarcomas in primary tumors after EBRT, as it may suggest a benefit in local control or recurrences after surgical resection in those at high risk of microscopic residual disease. The addition of IOERT to salvage resection for isolated recurrence of gynecologic cancers suggest favorable local control in cases with concern for residual microscopic disease.

8.
Mol Cell ; 52(5): 746-57, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24239292

RESUMEN

Although heterochromatin is enriched with repressive traits, it is also actively transcribed, giving rise to large amounts of noncoding RNAs. Although these RNAs are responsible for the formation and maintenance of heterochromatin, little is known about how their transcription is regulated. Here, we show that the Snail1 transcription factor represses mouse pericentromeric transcription, acting through the H3K4 deaminase LOXL2. Since Snail1 plays a key role in the epithelial-to-mesenchymal transition (EMT), we analyzed the regulation of heterochromatin transcription in this process. At the onset of EMT, one of the major structural heterochromatin proteins, HP1α, is transiently released from heterochromatin foci in a Snail1/LOXL2-dependent manner, concomitantly with a downregulation of major satellite transcription. Moreover, preventing the downregulation of major satellite transcripts compromised the migratory and invasive behavior of mesenchymal cells. We propose that Snail1 regulates heterochromatin transcription through LOXL2, thus creating the favorable transcriptional state necessary for completing EMT.


Asunto(s)
Aminoácido Oxidorreductasas/genética , Transición Epitelial-Mesenquimal/genética , Heterocromatina/genética , Factores de Transcripción/genética , Transcripción Genética , Animales , Línea Celular , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Regulación hacia Abajo , Células HEK293 , Histonas/genética , Humanos , Mesodermo/metabolismo , Ratones , Factores de Transcripción de la Familia Snail
9.
Cell Mol Life Sci ; 77(5): 919-935, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31312879

RESUMEN

Wnt ligands signal through canonical or non-canonical signaling pathways. Although both routes share common elements, such as the Fz2 receptor, they differ in the co-receptor and in many of the final responses; for instance, whereas canonical Wnts increase ß-catenin stability, non-canonical ligands downregulate it. However, both types of ligands stimulate tumor cell invasion. We show here that both the canonical Wnt3a and the non-canonical Wnt5a stimulate Fz2 tyrosine phosphorylation, Fyn binding to Fz2, Fyn activation and Fyn-dependent Stat3 phosphorylation. Wnt3a and Wnt5a require Src for Fz2 tyrosine phosphorylation; Src binds to canonical and non-canonical co-receptors (LRP5/6 and Ror2, respectively) and is activated by Wnt3a and Wnt5a. This Fz2/Fyn/Stat3 branch is incompatible with the classical Fz2/Dvl2 pathway as shown by experiments of over-expression or depletion. Fyn is necessary for transcription of genes associated with invasiveness, such as Snail1, and for activation of cell invasion by both Wnt ligands. Our results extend the knowledge about canonical Wnt pathways, demonstrating additional roles for Fyn in this pathway and describing how this protein kinase is activated by both canonical and non-canonical Wnts.


Asunto(s)
Receptores Frizzled/metabolismo , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Proteína Wnt-5a/metabolismo , Proteína Wnt3A/metabolismo , Familia-src Quinasas/metabolismo , Línea Celular , Activación Enzimática/genética , Células HEK293 , Humanos , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Invasividad Neoplásica/genética , Neoplasias/patología , Fosforilación/fisiología , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Factor de Transcripción STAT3/metabolismo , Transcripción Genética/genética , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo
10.
Mol Cell ; 46(3): 369-76, 2012 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-22483618

RESUMEN

Methylation of lysine 4 (K4) within histone H3 has been linked to active transcription and is removed by LSD1 and the JmjC domain-containing proteins by amino-oxidation or hydroxylation, respectively. Here, we describe the deamination catalyzed by Lysyl oxidase-like 2 protein (LOXL2) as an unconventional chemical mechanism for H3K4 modification. Infrared spectroscopy and mass spectrometry analyses demonstrated that recombinant LOXL2 specifically deaminates trimethylated H3K4. Moreover, LOXL2 activity is linked with the transcriptional control of CDH1 gene by regulating H3K4me3 deamination. These results reveal another H3 modification and provide a different mechanism for H3K4 modification.


Asunto(s)
Aminoácido Oxidorreductasas/fisiología , Histonas/metabolismo , Antígenos CD , Cadherinas/genética , Línea Celular Tumoral , Desaminación , Regulación de la Expresión Génica , Humanos , Lisina/metabolismo , Metilación
11.
Nucleic Acids Res ; 46(1): 146-158, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29059385

RESUMEN

Besides controlling epithelial-to-mesenchymal transition (EMT) and cell invasion, the Snail1 transcriptional factor also provides cells with cancer stem cell features. Since telomere maintenance is essential for stemness, we have examined the control of telomere integrity by Snail1. Fluorescence in situ hybridization (FISH) analysis indicates that Snail1-depleted mouse mesenchymal stem cells (MSC) have both a dramatic increase of telomere alterations and shorter telomeres. Remarkably, Snail1-deficient MSC present higher levels of both telomerase activity and the long non-coding RNA called telomeric repeat-containing RNA (TERRA), an RNA that controls telomere integrity. Accordingly, Snail1 expression downregulates expression of the telomerase gene (TERT) as well as of TERRA 2q, 11q and 18q. TERRA and TERT are transiently downregulated during TGFß-induced EMT in NMuMG cells, correlating with Snail1 expression. Global transcriptome analysis indicates that ectopic expression of TERRA affects the transcription of some genes induced during EMT, such as fibronectin, whereas that of TERT does not modify those genes. We propose that Snail1 repression of TERRA is required not only for telomere maintenance but also for the expression of a subset of mesenchymal genes.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción de la Familia Snail/genética , Homeostasis del Telómero/genética , Telómero/genética , Animales , Línea Celular , Células Cultivadas , Transición Epitelial-Mesenquimal/genética , Perfilación de la Expresión Génica/métodos , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones Noqueados , Células Madre Neoplásicas/metabolismo , ARN Largo no Codificante/genética , Factores de Transcripción de la Familia Snail/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Telómero/enzimología
12.
Rep Pract Oncol Radiother ; 25(2): 227-232, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32042274

RESUMEN

AIM: To analyse the possible relationship between the EQD2(α/ß=3Gy) at 2 cm3 of the vagina and late toxicity in vaginal-cuff-brachytherapy (VBT) after external-beam-irradiation (EBRT) for postoperative endometrial carcinoma (EC). MATERIALS AND METHODS: From 2014 to 2016, 62 postoperative EC patients were treated with EBRT + VBT. The median EBRT dose was 45 Gy (44 Gy-50.4 Gy). VBT involved a single 7 Gy dose. Toxicity was prospectively evaluated using the RTOG score for the rectum and bladder and the objective LENT-SOMA criteria for the vagina. EQD2(α/ß = 3Gy) at 2 cm3 of the most exposed part of the vagina was calculated by the sum of the EBRT + VBT dose. Statistics: Boxplot, Student's t and Chi-square tests and ROC curves. RESULTS: Mean follow-up: 39.2 months (15-68). Late toxicity: bladder:0 patient; rectum:2 patients-G1; Vagina: 26 patients-17G1, 9G2; median EQD2(α/ß=3Gy) at 2 cm3 in G0-G1 patients was 70.4 Gy(SD2.36), being 72.5 Gy(SD2.94) for G2p. The boxplot suggested a cut-point identifying the absence of G2: 100 % of G2p received >68 Gy, ROC curves showed an area under the curve of 0.72 (sensitivity of 1 and specificity of 0.15). CONCLUSIONS: Doses >68 Gy EQD2(α/ß=3Gy) at 2 cm3 to the most exposed area of the vagina were associated with late G2 vaginal toxicity in postoperative EC patients treated with EBRT + VBT suggesting a very good dose limit to eliminate the risk of G2 late toxicity. The specificity obtained indicates the need for prospective analyses.

13.
Crit Rev Biochem Mol Biol ; 52(3): 327-339, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28276699

RESUMEN

Canonical Wnt signaling controls ß-catenin protein stabilization, its translocation to the nucleus and the activation of ß-catenin/Tcf-4-dependent transcription. In this review, we revise and discuss the recent results describing actions of p120-catenin in different phases of this pathway. More specifically, we comment its involvement in four different steps: (i) the very early activation of CK1ɛ, essential for Dvl-2 binding to the Wnt receptor complex; (ii) the internalization of GSK3 and Axin into multivesicular bodies, necessary for a complete stabilization of ß-catenin; (iii) the activation of Rac1 small GTPase, required for ß-catenin translocation to the nucleus; and (iv) the release of the inhibitory action caused by Kaiso transcriptional repressor. We integrate these new results with the previously known action of other elements in this pathway, giving a particular relevance to the responses of the Wnt pathway not required for ß-catenin stabilization but for ß-catenin transcriptional activity. Moreover, we discuss the possible future implications, suggesting that the two cellular compartments where ß-catenin is localized, thus, the adherens junction complex and the Wnt signalosome, are more physically connected that previously thought.


Asunto(s)
Cateninas/metabolismo , Receptores Wnt/metabolismo , Transcripción Genética/fisiología , Vía de Señalización Wnt/fisiología , Animales , Proteínas Dishevelled/metabolismo , Proteínas de Drosophila/metabolismo , Humanos , Factores de Transcripción/metabolismo , beta Catenina/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Catenina delta
14.
Int J Cancer ; 145(11): 3064-3077, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31032902

RESUMEN

Myofibroblasts are a population of highly contractile fibroblasts that express and require the activity of the transcription factor Snail1. Cancer-associated fibroblasts (CAFs) correlate with low survival of cancer patients when present in the stroma of primary tumors. Remarkably, the presence of myofibroblastic CAFs (which express Snail1) creates mechanical properties in the tumor microenvironment that support metastasis. However, therapeutic blockage of fibroblast activity in patients with cancer is a double-edged sword, as normal fibroblast activities often restrict tumor cell invasion. We used fibroblasts depleted of Snail1 or protein arginine methyltransferases 1 and 4 (PRMT1/-4) to identify specific epigenetic modifications induced by TGFß/Snail1. Furthermore, we analyzed the in vivo efficiency of methyltransferase inhibitors using mouse models of wound healing and metastasis, as well as fibroblasts isolated from patients with idiopathic pulmonary fibrosis (IPF). Mechanistically, TGFß-induced Snail1 promotes the epigenetic mark of asymmetrically dimethylated arginine. Critically, we found that inhibitors of methyltransferases prevent myofibroblast activity (but not regular fibroblast activity) in the extracellular matrix, both in cell culture and in vivo. In a mouse breast cancer model, the inhibitor sinefungin reduces both the myofibroblast activity in the tumor stroma and the metastatic burden in the lung. Two distinct inhibitors effectively blocked the exacerbated myofibroblast activity of patient-derived IPF fibroblasts. Our data reveal epigenetic regulation of myofibroblast transdifferentiation in both wound healing and in disease (fibrosis and breast cancer). Thus, methyltransferase inhibitors are good candidates as therapeutic reagents for these diseases.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Inhibidores Enzimáticos/administración & dosificación , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Neoplasias Pulmonares/secundario , Metiltransferasas/antagonistas & inhibidores , Miofibroblastos/efectos de los fármacos , Factores de Transcripción de la Familia Snail/genética , Adenosina/administración & dosificación , Adenosina/análogos & derivados , Adenosina/farmacología , Animales , Neoplasias de la Mama/enzimología , Fibroblastos Asociados al Cáncer/citología , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fibroblastos Asociados al Cáncer/metabolismo , Línea Celular Tumoral , Transdiferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Epigénesis Genética , Femenino , Eliminación de Gen , Humanos , Fibrosis Pulmonar Idiopática/enzimología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/enzimología , Metiltransferasas/genética , Ratones , Miofibroblastos/citología , Miofibroblastos/enzimología , Factores de Transcripción de la Familia Snail/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Am J Pathol ; 187(1): 55-69, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27863213

RESUMEN

The aim of the present study was to analyze in vivo the role of zinc finger protein SNAI1 (SNAI1) on renal fibrosis. Unilateral ureteral obstruction injury was induced in Snai1 knockout mice. Snai1 gene deletion was, however, only partial and could therefore not be correlated to reduced fibrosis. Expression of SNAI1 protein and epithelial-mesenchymal transformation markers was then assessed in human chronic allograft nephropathy biopsy specimens. Significant up-regulation of SNAI1 protein was detected within cytoplasm of proximal tubules localized, for some of them, near foci of fibrosis and tubular atrophy. No concomitant epithelial-mesenchymal transformation could, however, be demonstrated analyzing the expression of the fibroblast markers vimentin, α-smooth muscle actin, and S100A4. SNAI1 cytoplasmic up-regulation was particularly evident in biopsy specimens obtained from calcineurin inhibitor-treated patients, which might be because of, as suggested by in vitro experiments, a decrease of the proteasome chimotrypsin activity. Deeper analysis on chronic allograft nephropathy biopsy specimens suggested that SNAI1 cytoplasmic up-regulation was preceded by a transient increase of phosphorylated heat shock protein 27, p38 mitogen-activated protein kinase, and glycogen synthase kinase 3ß. Concomitant down-regulation of the polyubuquitinylated conjugates was detected in SNAI1+ tubules. Altogether, these results might suggest that calcineurin inhibitor-induced tubular SNAI1 protein cytoplasmic accumulation, possibly because of impaired SNAI1 proteasomal degradation and nuclear translocation, might be a sign of a diseased profibrotic epithelial phenotype.


Asunto(s)
Citoplasma/metabolismo , Células Epiteliales/metabolismo , Trasplante de Riñón , Túbulos Renales/metabolismo , Túbulos Renales/patología , Factores de Transcripción de la Familia Snail/metabolismo , Dedos de Zinc , Aloinjertos/efectos de los fármacos , Animales , Biopsia , Inhibidores de la Calcineurina/farmacología , Enfermedad Crónica , Perros , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Fibrosis , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Trasplante de Riñón/efectos adversos , Túbulos Renales/efectos de los fármacos , Células de Riñón Canino Madin Darby , Masculino , Ratones Noqueados , Fenotipo , Fosforilación/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Obstrucción Ureteral/patología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
Rep Pract Oncol Radiother ; 23(6): 547-561, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30534019

RESUMEN

Brachytherapy plays an essential role in the curative intent management of locally advanced cervical cancer. The introduction of the magnetic resonance (MR) as a preferred image modality and the development of new type of applicators with interstitial components have further improved its benefits. The aim of this work is to review the current status of one important aspect in the cervix cancer brachytherapy procedure, namely catheter reconstruction. MR compatible intracavitary and interstitial applicators are described. Considerations about the use of MR imaging (MRI) regarding appropriate strategies for applicator reconstruction, technical requirements, MR sequences, patient preparation and applicator commissioning are included. It is recommendable to perform the reconstruction process in the same image study employed by the physician for contouring, that is, T2 weighted (T2W) sequences. Nevertheless, a clear identification of the source path inside the catheters and the applicators is a challenge when using exclusively T2W sequences. For the intracavitary component of the implant, sometimes the catheters may be filled with some substance that produces a high intensity signal on MRI. However, this strategy is not feasible for plastic tubes or titanium needles, which, moreover, induce magnetic susceptibility artifacts. In these situations, the use of applicator libraries available in the treatment planning system (TPS) is useful, since they not only include accurate geometrical models of the intracavitary applicators, but also recent developments have made possible the implementation of the interstitial component. Another strategy to improve the reconstruction process is based on the incorporation of MR markers, such as small pellets, to be used as anchor points. Many institutions employ computed tomography (CT) as a supporting image modality. The registration of CT and MR image sets should be carefully performed, and its uncertainty previously assessed. Besides, an important research work is being carried out regarding the use of ultrasound and electromagnetic tracking technologies.

18.
Semin Cancer Biol ; 36: 71-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26506454

RESUMEN

F-box proteins are the key recognition subunit of multimeric E3 ubiquitin ligase complexes that participate in the proteasome degradation of specific substrates. In the last years, a discrete number of F-box proteins have been shown to regulate the epithelial-to-mesenchymal transition (EMT), a process defined by a rapid change of cell phenotype, the loss of epithelial characteristics and the acquisition of a more invasive phenotype. Specific EMT transcription factors (EMT-TFs), such as Snail, Slug, Twist and Zeb, control EMT induction both during development and in cancer. These EMT-TFs are short-lived proteins that are targeted to the proteasome system by specific F-box proteins, keeping them at low levels. F-box proteins also indirectly regulate the EMT process by controlling EMT inducers, such as Notch, c-Myc or mTOR. Here we summarize the role that these F-box proteins (Fbxw1, Fbxw7, Fbxl14, Fbxl5, Fbxo11 and Fbxo45) play in controlling EMT during development and cancer progression, a process dependent on post-translational modifications that govern their interaction with target proteins.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Animales , Proteínas Cullin/química , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejos Multiproteicos , Neoplasias/etiología , Neoplasias/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
19.
Mol Cell Proteomics ; 14(2): 303-15, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25505127

RESUMEN

Adipogenesis requires a differentiation program driven by multiple transcription factors, where PPARγ and C/EBPα play a central role. Recent findings indicate that Snail inhibits adipocyte differentiation in 3T3-L1 and murine mesenchymal stem cells (mMSC). An in-depth quantitative SILAC analysis of the nuclear fraction of Snail-induced alterations of 3T3-L1 cells was carried out. In total, 2251 overlapping proteins were simultaneously quantified in forward and reverse experiments. We observed 574 proteins deregulated by Snail1 using a fold-change ≥1.5, with 111 up- and 463 down-regulated proteins, respectively. Among other proteins, multiple transcription factors such as Trip4, OsmR, Nr2f6, Cbx6, and Prrx1 were down-regulated. Results were validated in 3T3-L1 cells and mMSC cells by Western blot and quantitative PCR. Knock-down experiments in 3T3-L1 cells demonstrated that only Nr2f6 (and Trip4 at minor extent) was required for adipocyte differentiation. Ectopic expression of Nr2f6 reversed the effects of Snail1 and promoted adipogenesis. Because Nr2f6 inhibits the expression of IL-17, we tested the effect of Snail on IL-17 expression. IL-17 and TNFα were among the most up-regulated pro-inflammatory cytokines in Snail-transfected 3T3-L1 and mMSC cells. Furthermore, the blocking of IL-17 activity in Snail-transfected cells promoted adipocyte differentiation, reverting Snail inhibition. In summary, Snail inhibits adipogenesis through a down-regulation of Nr2f6, which in turn facilitates the expression of IL-17, an anti-adipogenic cytokine. These results would support a novel and important role for Snail and Nr2f6 in obesity control.


Asunto(s)
Adipocitos/citología , Adipocitos/metabolismo , Factores de Transcripción COUP/metabolismo , Diferenciación Celular , Interleucina-17/metabolismo , Proteómica/métodos , Factores de Transcripción/metabolismo , Células 3T3-L1 , Adipogénesis , Animales , Extractos Celulares , Núcleo Celular/metabolismo , Regulación hacia Abajo , Células Madre Mesenquimatosas/metabolismo , Ratones , Modelos Biológicos , Proteínas Represoras , Reproducibilidad de los Resultados , Transducción de Señal , Factores de Transcripción de la Familia Snail , Transfección
20.
Nucleic Acids Res ; 43(12): 5785-97, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-25990740

RESUMEN

In this report we have analyzed the role of antisense transcription in the control of LEF1 transcription factor expression. A natural antisense transcript (NAT) is transcribed from a promoter present in the first intron of LEF1 gene and undergoes splicing in mesenchymal cells. Although this locus is silent in epithelial cells, and neither NAT transcript nor LEF1 mRNA are expressed, in cell lines with an intermediate epithelial-mesenchymal phenotype presenting low LEF1 expression, the NAT is synthesized and remains unprocessed. Contrarily to the spliced NAT, this unspliced NAT down-regulates the main LEF1 promoter activity and attenuates LEF1 mRNA transcription. Unspliced LEF1 NAT interacts with LEF1 promoter and facilitates PRC2 binding to the LEF1 promoter and trimethylation of lysine 27 in histone 3. Expression of the spliced form of LEF1 NAT in trans prevents the action of unspliced NAT by competing for interaction with the promoter. Thus, these results indicate that LEF1 gene expression is attenuated by an antisense non-coding RNA and that this NAT function is regulated by the balance between its spliced and unspliced forms.


Asunto(s)
Regulación de la Expresión Génica , Factor de Unión 1 al Potenciador Linfoide/genética , Empalme del ARN , ARN sin Sentido/metabolismo , Línea Celular , Células Epiteliales/metabolismo , Humanos , Factor de Unión 1 al Potenciador Linfoide/biosíntesis , Complejo Represivo Polycomb 2/metabolismo , Regiones Promotoras Genéticas , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA