Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Lancet ; 401(10378): 762-771, 2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739882

RESUMEN

BACKGROUND: One in four pregnancies end in a pregnancy loss. Although the effect on couples is well documented, evidence-based treatments and prediction models are absent. Fetal aneuploidy is associated with a higher chance of a next successful pregnancy compared with euploid pregnancy loss in which underlying maternal conditions might be causal. Ploidy diagnostics are therefore advantageous but challenging as they require collection of the pregnancy tissue. Cell-free fetal DNA (cffDNA) from maternal blood has the potential for evaluation of fetal ploidy status, but no large-scale validation of the method has been done. METHODS: In this prospective cohort study, women with a pregnancy loss were recruited as a part of the Copenhagen Pregnancy Loss (COPL) study from three gynaecological clinics at public hospitals in Denmark. Women were eligible for inclusion if older than 18 years with a pregnancy loss before gestational age 22 weeks (ie, 154 days) and with an intrauterine pregnancy confirmed by ultrasound (including anembryonic sac), and women with pregnancies of unknown location or molar pregnancies were excluded. Maternal blood was collected while pregnancy tissue was still in situ or within 24 h after pregnancy tissue had passed and was analysed by genome-wide sequencing of cffDNA. Direct sequencing of the pregnancy tissue was done as reference. FINDINGS: We included 1000 consecutive women, at the time of a pregnancy loss diagnosis, between Nov 12, 2020, and May 1, 2022. Results from the first 333 women with a pregnancy loss (recruited between Nov 12, 2020, and Aug 14, 2021) were used to evaluate the validity of cffDNA-based testing. Results from the other 667 women were included to evaluate cffDNA performance and result distribution in a larger cohort of 1000 women in total. Gestational age of fetus ranged from 35-149 days (mean of 70·5 days [SD 16·5], or 10 weeks plus 1 day). The cffDNA-based test had a sensitivity for aneuploidy detection of 85% (95% CI 79-90) and a specificity of 93% (95% CI 88-96) compared with direct sequencing of the pregnancy tissue. Among 1000 cffDNA-based test results, 446 (45%) were euploid, 405 (41%) aneuploid, 37 (4%) had multiple aneuploidies, and 112 (11%) were inconclusive. 105 (32%) of 333 women either did not manage to collect the pregnancy tissue or collected a sample classified as unknown tissue giving a high risk of being maternal. INTERPRETATION: This validation of cffDNA-based testing in pregnancy loss shows the potential and feasibility of the method to distinguish euploid and aneuploid pregnancy loss for improved clinical management and benefit of future reproductive medicine and women's health research. FUNDING: Ole Kirks Foundation, BioInnovation Institute Foundation, and the Novo Nordisk Foundation.


Asunto(s)
Aborto Espontáneo , Ácidos Nucleicos Libres de Células , Embarazo , Humanos , Femenino , Lactante , Recién Nacido , Estudios Prospectivos , Feto , Aneuploidia , ADN , Diagnóstico Prenatal/métodos
2.
Metab Eng ; 76: 179-192, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36738854

RESUMEN

Although strain tolerance to high product concentrations is a barrier to the economically viable biomanufacturing of industrial chemicals, chemical tolerance mechanisms are often unknown. To reveal tolerance mechanisms, an automated platform was utilized to evolve Escherichia coli to grow optimally in the presence of 11 industrial chemicals (1,2-propanediol, 2,3-butanediol, glutarate, adipate, putrescine, hexamethylenediamine, butanol, isobutyrate, coumarate, octanoate, hexanoate), reaching tolerance at concentrations 60%-400% higher than initial toxic levels. Sequencing genomes of 223 isolates from 89 populations, reverse engineering, and cross-compound tolerance profiling were employed to uncover tolerance mechanisms. We show that: 1) cells are tolerized via frequent mutation of membrane transporters or cell wall-associated proteins (e.g., ProV, KgtP, SapB, NagA, NagC, MreB), transcription and translation machineries (e.g., RpoA, RpoB, RpoC, RpsA, RpsG, NusA, Rho), stress signaling proteins (e.g., RelA, SspA, SpoT, YobF), and for certain chemicals, regulators and enzymes in metabolism (e.g., MetJ, NadR, GudD, PurT); 2) osmotic stress plays a significant role in tolerance when chemical concentrations exceed a general threshold and mutated genes frequently overlap with those enabling chemical tolerance in membrane transporters and cell wall-associated proteins; 3) tolerization to a specific chemical generally improves tolerance to structurally similar compounds whereas a tradeoff can occur on dissimilar chemicals, and 4) using pre-tolerized starting isolates can hugely enhance the subsequent production of chemicals when a production pathway is inserted in many, but not all, evolved tolerized host strains, underpinning the need for evolving multiple parallel populations. Taken as a whole, this study provides a comprehensive genotype-phenotype map based on identified mutations and growth phenotypes for 223 chemical tolerant isolates.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutación , 1-Butanol/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas Represoras/genética , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(45): 27954-27961, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33106428

RESUMEN

Toxicity from the external presence or internal production of compounds can reduce the growth and viability of microbial cell factories and compromise productivity. Aromatic compounds are generally toxic for microorganisms, which makes their production in microbial hosts challenging. Here we use adaptive laboratory evolution to generate Saccharomyces cerevisiae mutants tolerant to two aromatic acids, coumaric acid and ferulic acid. The evolution experiments were performed at low pH (3.5) to reproduce conditions typical of industrial processes. Mutant strains tolerant to levels of aromatic acids near the solubility limit were then analyzed by whole genome sequencing, which revealed prevalent point mutations in a transcriptional activator (Aro80) that is responsible for regulating the use of aromatic amino acids as the nitrogen source. Among the genes regulated by Aro80, ESBP6 was found to be responsible for increasing tolerance to aromatic acids by exporting them out of the cell. Further examination of the native function of Esbp6 revealed that this transporter can excrete fusel acids (byproducts of aromatic amino acid catabolism) and this role is shared with at least one additional transporter native to S. cerevisiae (Pdr12). Besides conferring tolerance to aromatic acids, ESBP6 overexpression was also shown to significantly improve the secretion in coumaric acid production strains. Overall, we showed that regulating the activity of transporters is a major mechanism to improve tolerance to aromatic acids. These findings can be used to modulate the intracellular concentration of aromatic compounds to optimize the excretion of such products while keeping precursor molecules inside the cell.


Asunto(s)
Ácidos Cumáricos/metabolismo , Tolerancia a Medicamentos/genética , Ácidos/metabolismo , Adaptación Fisiológica/genética , Aminoácidos Aromáticos/metabolismo , Aminoácidos Aromáticos/toxicidad , Ácidos Cumáricos/toxicidad , Evolución Molecular Dirigida , Tolerancia a Medicamentos/fisiología , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Secuenciación Completa del Genoma/métodos
4.
Metab Eng ; 72: 376-390, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35598887

RESUMEN

Membrane transport proteins are potential targets for medical and biotechnological applications. However, more than 30% of reported membrane transporter families are either poorly characterized or lack adequate functional annotation. Here, adaptive laboratory evolution was leveraged to identify membrane transporters for a set of four amino acids as well as specific mutations that modulate the activities of these transporters. Specifically, Escherichia coli was adaptively evolved under increasing concentrations of L-histidine, L-phenylalanine, L-threonine, and L-methionine separately with multiple replicate evolutions. Evolved populations and isolated clones displayed growth rates comparable to the unstressed ancestral strain at elevated concentrations (four-to six-fold increases) of the targeted amino acids. Whole genome sequencing of the evolved strains revealed a diverse number of key mutations, including SNPs, small deletions, and copy number variants targeting the transporters leuE for histidine, yddG for phenylalanine, yedA for methionine, and brnQ and rhtC for threonine. Reverse engineering of the mutations in the ancestral strain established mutation causality of the specific mutations for the tolerant phenotypes. The functional roles of yedA and brnQ in the transport of methionine and threonine, respectively, are novel assignments and their functional roles were validated using a flow cytometry cellular accumulation assay. To demonstrate how the identified transporters can be leveraged for production, an L-phenylalanine overproduction strain was shown to be a superior producer when the identified yddG exporter was overexpressed. Overall, the results revealed the striking efficiency of laboratory evolution to identify transporters and specific mutational mechanisms to modulate their activities, thereby demonstrating promising applicability in transporter discovery efforts and strain engineering.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Proteínas de Escherichia coli , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Aminoácidos/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteínas de Transporte de Membrana/genética , Metionina/genética , Fenilalanina/genética , Treonina/genética
5.
PLoS Biol ; 17(3): e2007050, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30856169

RESUMEN

We present a selection design that couples S-adenosylmethionine-dependent methylation to growth. We demonstrate its use in improving the enzyme activities of not only N-type and O-type methyltransferases by 2-fold but also an acetyltransferase of another enzyme category when linked to a methylation pathway in Escherichia coli using adaptive laboratory evolution. We also demonstrate its application for drug discovery using a catechol O-methyltransferase and its inhibitors entacapone and tolcapone. Implementation of this design in Saccharomyces cerevisiae is also demonstrated.


Asunto(s)
S-Adenosilmetionina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Catecol O-Metiltransferasa/metabolismo , Inhibidores de Catecol O-Metiltransferasa/farmacología , Catecoles/farmacología , Metilación , Metiltransferasas/metabolismo , Nitrilos/farmacología , Tolcapona/farmacología
6.
Metab Eng ; 65: 123-134, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33753231

RESUMEN

Parageobacillus thermoglucosidasius represents a thermophilic, facultative anaerobic bacterial chassis, with several desirable traits for metabolic engineering and industrial production. To further optimize strain productivity, a systems level understanding of its metabolism is needed, which can be facilitated by a genome-scale metabolic model. Here, we present p-thermo, the most complete, curated and validated genome-scale model (to date) of Parageobacillus thermoglucosidasius NCIMB 11955. It spans a total of 890 metabolites, 1175 reactions and 917 metabolic genes, forming an extensive knowledge base for P. thermoglucosidasius NCIMB 11955 metabolism. The model accurately predicts aerobic utilization of 22 carbon sources, and the predictive quality of internal fluxes was validated with previously published 13C-fluxomics data. In an application case, p-thermo was used to facilitate more in-depth analysis of reported metabolic engineering efforts, giving additional insight into fermentative metabolism. Finally, p-thermo was used to resolve a previously uncharacterised bottleneck in anaerobic metabolism, by identifying the minimal required supplemented nutrients (thiamin, biotin and iron(III)) needed to sustain anaerobic growth. This highlights the usefulness of p-thermo for guiding the generation of experimental hypotheses and for facilitating data-driven metabolic engineering, expanding the use of P. thermoglucosidasius as a high yield production platform.


Asunto(s)
Bacillaceae , Compuestos Férricos , Anaerobiosis , Ingeniería Metabólica
7.
Anal Chem ; 92(24): 15968-15974, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33269929

RESUMEN

Technological advances in high-resolution mass spectrometry (MS) vastly increased the number of samples that can be processed in a life science experiment, as well as volume and complexity of the generated data. To address the bottleneck of high-throughput data processing, we present SmartPeak (https://github.com/AutoFlowResearch/SmartPeak), an application that encapsulates advanced algorithms to enable fast, accurate, and automated processing of capillary electrophoresis-, gas chromatography-, and liquid chromatography (LC)-MS(/MS) data and high-pressure LC data for targeted and semitargeted metabolomics, lipidomics, and fluxomics experiments. The application allows for an approximate 100-fold reduction in the data processing time compared to manual processing while enhancing quality and reproducibility of the results.


Asunto(s)
Procesamiento Automatizado de Datos/métodos , Metabolómica/métodos , Automatización , Cromatografía Liquida , Electroforesis Capilar , Espectrometría de Masas en Tándem , Factores de Tiempo
8.
Biotechnol Bioeng ; 117(12): 3835-3848, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32808670

RESUMEN

Growth decoupling can be used to optimize the production of biochemicals and proteins in cell factories. Inhibition of excess biomass formation allows for carbon to be utilized efficiently for product formation instead of growth, resulting in increased product yields and titers. Here, we used CRISPR interference to increase the production of a single-domain antibody (sdAb) by inhibiting growth during production. First, we screened 21 sgRNA targets in the purine and pyrimidine biosynthesis pathways and found that the repression of 11 pathway genes led to the increased green fluorescent protein production and decreased growth. The sgRNA targets pyrF, pyrG, and cmk were selected and further used to improve the production of two versions of an expression-optimized sdAb. Proteomics analysis of the sdAb-producing pyrF, pyrG, and cmk growth decoupling strains showed significantly decreased RpoS levels and an increase of ribosome-associated proteins, indicating that the growth decoupling strains do not enter stationary phase and maintain their capacity for protein synthesis upon growth inhibition. Finally, sdAb production was scaled up to shake-flask fermentation where the product yield was improved 2.6-fold compared to the control strain with no sgRNA target sequence. An sdAb content of 14.6% was reached in the best-performing pyrG growth decoupling strain.


Asunto(s)
Sistemas CRISPR-Cas , Escherichia coli , Ingeniería Metabólica , Nucleótidos , Anticuerpos de Dominio Único/biosíntesis , Escherichia coli/genética , Escherichia coli/metabolismo , Nucleótidos/biosíntesis , Nucleótidos/genética , Anticuerpos de Dominio Único/genética
9.
Biotechnol Bioeng ; 117(7): 2074-2088, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32277712

RESUMEN

Chemostat cultivation mode imposes selective pressure on the cells, which may result in slow adaptation in the physiological state over time. We applied a two-compartment scale-down chemostat system imposing feast-famine conditions to characterize the long-term (100 s of hours) response of Saccharomyces cerevisiae to fluctuating glucose availability. A wild-type strain and a recombinant strain, expressing an insulin precursor, were cultured in the scale-down system, and analyzed at the physiological and proteomic level. Phenotypes of both strains were compared with those observed in a well-mixed chemostat. Our results show that S. cerevisiae subjected to long-term chemostat conditions undergoes a global reproducible shift in its cellular state and that this transition occurs faster and is larger in magnitude for the recombinant strain including a significant decrease in the expression of the insulin product. We find that the transition can be completely avoided in the presence of fluctuations in glucose availability as the strains subjected to feast-famine conditions under otherwise constant culture conditions exhibited constant levels of the measured proteome for over 250 hr. We hypothesize possible mechanisms responsible for the observed phenotypes and suggest experiments that could be used to test these mechanisms.


Asunto(s)
Glucosa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Técnicas de Cultivo de Célula/métodos , Microbiología Industrial/métodos , Proteoma/metabolismo , Proteínas Recombinantes/metabolismo
10.
Nat Methods ; 13(3): 233-6, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26752768

RESUMEN

We comprehensively assessed the contribution of the Shine-Dalgarno sequence to protein expression and used the data to develop EMOPEC (Empirical Model and Oligos for Protein Expression Changes; http://emopec.biosustain.dtu.dk). EMOPEC is a free tool that makes it possible to modulate the expression level of any Escherichia coli gene by changing only a few bases. Measured protein levels for 91% of our designed sequences were within twofold of the desired target level.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Iniciación de la Cadena Peptídica Traduccional/genética , Ingeniería de Proteínas/métodos , ARN Bacteriano/genética , Programas Informáticos , Algoritmos , Clonación Molecular , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Ribosómico 16S/genética , Homología de Secuencia de Ácido Nucleico
11.
Bioinformatics ; 34(13): 2319-2321, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29949953

RESUMEN

Summary: Metabolite analogues (MAs) mimic the structure of native metabolites, can competitively inhibit their utilization in enzymatic reactions, and are commonly used as selection tools for isolating desirable mutants of industrial microorganisms. Genome-scale metabolic models representing all biochemical reactions in an organism can be used to predict effects of MAs on cellular phenotypes. Here, we present the metabolite analogues for rational strain improvement (MARSI) framework. MARSI provides a rational approach to strain improvement by searching for metabolites as targets instead of genes or reactions. The designs found by MARSI can be implemented by supplying MAs in the culture media, enabling metabolic rewiring without the use of recombinant DNA technologies that cannot always be used due to regulations. To facilitate experimental implementation, MARSI provides tools to identify candidate MAs to a target metabolite from a database of known drugs and analogues. Availability and implementation: The code is freely available at https://github.com/biosustain/marsi under the Apache License V2. MARSI is implemented in Python. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Metabolómica/métodos , Programas Informáticos , Bases de Datos Factuales , Genoma
12.
Metab Eng ; 56: 130-141, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31550508

RESUMEN

Improving the growth phenotypes of microbes in high product concentrations is an essential design objective in the development of robust cell factories. However, the limited knowledge regarding tolerance mechanisms makes rational design of such traits complicated. Here, adaptive laboratory evolution was used to explore the tolerance mechanisms that Saccharomyces cerevisiae can evolve in the presence of inhibiting concentrations of three dicarboxylic acids: glutaric acid, adipic acid and pimelic acid. Whole-genome sequencing of tolerant mutants enabled the discovery of the genetic changes behind tolerance and most mutations could be linked to the up-regulation of multidrug resistance transporters. The amplification of QDR3, in particular, was shown to confer tolerance not only to the three dicarboxylic acids investigated, but also towards muconic acid and glutaconic acid. In addition to increased acid tolerance, QDR3 overexpression also improved the production of muconic acid in the context of a strain engineered for producing this compound.


Asunto(s)
Ácidos Dicarboxílicos/farmacología , Evolución Molecular Dirigida , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética
13.
Microb Cell Fact ; 18(1): 3, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30626384

RESUMEN

BACKGROUND: Genome-scale metabolic models (GEMs) allow predicting metabolic phenotypes from limited data on uptake and secretion fluxes by defining the space of all the feasible solutions and excluding physio-chemically and biologically unfeasible behaviors. The integration of additional biological information in genome-scale models, e.g., transcriptomic or proteomic profiles, has the potential to improve phenotype prediction accuracy. This is particularly important for metabolic engineering applications where more accurate model predictions can translate to more reliable model-based strain design. RESULTS: Here we present a GEM with Enzymatic Constraints using Kinetic and Omics data (GECKO) model of Bacillus subtilis, which uses publicly available proteomic data and enzyme kinetic parameters for central carbon (CC) metabolic reactions to constrain the flux solution space. This model allows more accurate prediction of the flux distribution and growth rate of wild-type and single-gene/operon deletion strains compared to a standard genome-scale metabolic model. The flux prediction error decreased by 43% and 36% for wild-type and mutants respectively. The model additionally increased the number of correctly predicted essential genes in CC pathways by 2.5-fold and significantly decreased flux variability in more than 80% of the reactions with variable flux. Finally, the model was used to find new gene deletion targets to optimize the flux toward the biosynthesis of poly-γ-glutamic acid (γ-PGA) polymer in engineered B. subtilis. We implemented the single-reaction deletion targets identified by the model experimentally and showed that the new strains have a twofold higher γ-PGA concentration and production rate compared to the ancestral strain. CONCLUSIONS: This work confirms that integration of enzyme constraints is a powerful tool to improve existing genome-scale models, and demonstrates the successful use of enzyme-constrained models in B. subtilis metabolic engineering. We expect that the new model can be used to guide future metabolic engineering efforts in the important industrial production host B. subtilis.


Asunto(s)
Bacillus subtilis/enzimología , Enzimas/metabolismo , Modelos Biológicos , Ácido Poliglutámico/análogos & derivados , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Reactores Biológicos , Carbono/metabolismo , Electroforesis en Gel de Poliacrilamida , Enzimas/genética , Eliminación de Gen , Genoma Bacteriano , Cinética , Ingeniería Metabólica , Ácido Poliglutámico/análisis , Ácido Poliglutámico/biosíntesis
14.
Microb Cell Fact ; 18(1): 116, 2019 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-31255177

RESUMEN

BACKGROUND: Sucrose is an attractive industrial carbon source due to its abundance and the fact that it can be cheaply generated from sources such as sugarcane. However, only a few characterized Escherichia coli strains are able to metabolize sucrose, and those that can are typically slow growing or pathogenic strains. METHODS: To generate a platform strain capable of efficiently utilizing sucrose with a high growth rate, adaptive laboratory evolution (ALE) was utilized to evolve engineered E. coli K-12 MG1655 strains containing the sucrose utilizing csc genes (cscB, cscK, cscA) alongside the native sucrose consuming E. coli W. RESULTS: Evolved K-12 clones displayed an increase in growth and sucrose uptake rates of 1.72- and 1.40-fold on sugarcane juice as compared to the original engineered strains, respectively, while E. coli W clones showed a 1.4-fold increase in sucrose uptake rate without a significant increase in growth rate. Whole genome sequencing of evolved clones and populations revealed that two genetic regions were frequently mutated in the K-12 strains; the global transcription regulatory genes rpoB and rpoC, and the metabolic region related to a pyrimidine biosynthetic deficiency in K-12 attributed to pyrE expression. These two mutated regions have been characterized to confer a similar benefit when glucose is the main carbon source, and reverse engineering revealed the same causal advantages on M9 sucrose. Additionally, the most prevalent mutation found in the evolved E. coli W lineages was the inactivation of the cscR gene, the transcriptional repression of sucrose uptake genes. CONCLUSION: The generated K-12 and W platform strains, and the specific sets of mutations that enable their phenotypes, are available as valuable tools for sucrose-based industrial bioproduction in the facile E. coli chassis.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Sacarosa/metabolismo , Evolución Molecular Dirigida , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ingeniería Genética , Genoma Bacteriano , Glucosa/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo
15.
Microb Cell Fact ; 18(1): 186, 2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31665018

RESUMEN

BACKGROUND: Lactobacillus reuteri is a heterofermentative Lactic Acid Bacterium (LAB) that is commonly used for food fermentations and probiotic purposes. Due to its robust properties, it is also increasingly considered for use as a cell factory. It produces several industrially important compounds such as 1,3-propanediol and reuterin natively, but for cell factory purposes, developing improved strategies for engineering and fermentation optimization is crucial. Genome-scale metabolic models can be highly beneficial in guiding rational metabolic engineering. Reconstructing a reliable and a quantitatively accurate metabolic model requires extensive manual curation and incorporation of experimental data. RESULTS: A genome-scale metabolic model of L. reuteri JCM 1112T was reconstructed and the resulting model, Lreuteri_530, was validated and tested with experimental data. Several knowledge gaps in the metabolism were identified and resolved during this process, including presence/absence of glycolytic genes. Flux distribution between the two glycolytic pathways, the phosphoketolase and Embden-Meyerhof-Parnas pathways, varies considerably between LAB species and strains. As these pathways result in different energy yields, it is important to include strain-specific utilization of these pathways in the model. We determined experimentally that the Embden-Meyerhof-Parnas pathway carried at most 7% of the total glycolytic flux. Predicted growth rates from Lreuteri_530 were in good agreement with experimentally determined values. To further validate the prediction accuracy of Lreuteri_530, the predicted effects of glycerol addition and adhE gene knock-out, which results in impaired ethanol production, were compared to in vivo data. Examination of both growth rates and uptake- and secretion rates of the main metabolites in central metabolism demonstrated that the model was able to accurately predict the experimentally observed effects. Lastly, the potential of L. reuteri as a cell factory was investigated, resulting in a number of general metabolic engineering strategies. CONCLUSION: We have constructed a manually curated genome-scale metabolic model of L. reuteri JCM 1112T that has been experimentally parameterized and validated and can accurately predict metabolic behavior of this important platform cell factory.


Asunto(s)
Limosilactobacillus reuteri , Ingeniería Metabólica , Probióticos/metabolismo , Fermentación , Limosilactobacillus reuteri/genética , Limosilactobacillus reuteri/crecimiento & desarrollo , Limosilactobacillus reuteri/metabolismo
16.
Metab Eng ; 47: 383-392, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29702276

RESUMEN

Fast metabolite quantification methods are required for high throughput screening of microbial strains obtained by combinatorial or evolutionary engineering approaches. In this study, a rapid RIP-LC-MS/MS (RapidRIP) method for high-throughput quantitative metabolomics was developed and validated that was capable of quantifying 102 metabolites from central, amino acid, energy, nucleotide, and cofactor metabolism in less than 5 minutes. The method was shown to have comparable sensitivity and resolving capability as compared to a full length RIP-LC-MS/MS method (FullRIP). The RapidRIP method was used to quantify the metabolome of seven industrial strains of E. coli revealing significant differences in glycolytic, pentose phosphate, TCA cycle, amino acid, and energy and cofactor metabolites were found. These differences translated to statistically and biologically significant differences in thermodynamics of biochemical reactions between strains that could have implications when choosing a host for bioprocessing.


Asunto(s)
Escherichia coli/metabolismo , Metaboloma , Metabolómica/métodos , Cromatografía Liquida/métodos , Escherichia coli/genética , Espectrometría de Masas/métodos , Especificidad de la Especie
17.
Nucleic Acids Res ; 44(4): e36, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26496947

RESUMEN

Homologous recombination of single-stranded oligonucleotides is a highly efficient process for introducing precise mutations into the genome of E. coli and other organisms when mismatch repair (MMR) is disabled. This can result in the rapid accumulation of off-target mutations that can mask desired phenotypes, especially when selections need to be employed following the generation of combinatorial libraries. While the use of inducible mutator phenotypes or other MMR evasion tactics have proven useful, reported methods either require non-mobile genetic modifications or costly oligonucleotides that also result in reduced efficiencies of replacement. Therefore a new system was developed, Transient Mutator Multiplex Automated Genome Engineering (TM-MAGE), that solves problems encountered in other methods for oligonucleotide-mediated recombination. TM-MAGE enables nearly equivalent efficiencies of allelic replacement to the use of strains with fully disabled MMR and with an approximately 12- to 33-fold lower off-target mutation rate. Furthermore, growth temperatures are not restricted and a version of the plasmid can be readily removed by sucrose counterselection. TM-MAGE was used to combinatorially reconstruct mutations found in evolved salt-tolerant strains, enabling the identification of causative mutations and isolation of strains with up to 75% increases in growth rate and greatly reduced lag times in 0.6 M NaCl.


Asunto(s)
Ingeniería Genética/métodos , Genoma Bacteriano , Recombinación Homóloga/genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética , Reparación de la Incompatibilidad de ADN/genética , ADN de Cadena Simple/genética , Escherichia coli/genética , Mutación/genética , Oligonucleótidos/genética , Plásmidos/genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/biosíntesis
18.
PLoS Comput Biol ; 12(10): e1005140, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27711110

RESUMEN

Genome-scale metabolic reconstructions are currently available for hundreds of organisms. Constraint-based modeling enables the analysis of the phenotypic landscape of these organisms, predicting the response to genetic and environmental perturbations. However, since constraint-based models can only describe the metabolic phenotype at the reaction level, understanding the mechanistic link between genotype and phenotype is still hampered by the complexity of gene-protein-reaction associations. We implement a model transformation that enables constraint-based methods to be applied at the gene level by explicitly accounting for the individual fluxes of enzymes (and subunits) encoded by each gene. We show how this can be applied to different kinds of constraint-based analysis: flux distribution prediction, gene essentiality analysis, random flux sampling, elementary mode analysis, transcriptomics data integration, and rational strain design. In each case we demonstrate how this approach can lead to improved phenotype predictions and a deeper understanding of the genotype-to-phenotype link. In particular, we show that a large fraction of reaction-based designs obtained by current strain design methods are not actually feasible, and show how our approach allows using the same methods to obtain feasible gene-based designs. We also show, by extensive comparison with experimental 13C-flux data, how simple reformulations of different simulation methods with gene-wise objective functions result in improved prediction accuracy. The model transformation proposed in this work enables existing constraint-based methods to be used at the gene level without modification. This automatically leverages phenotype analysis from reaction to gene level, improving the biological insight that can be obtained from genome-scale models.


Asunto(s)
Genoma/fisiología , Análisis de Flujos Metabólicos/métodos , Metaboloma/fisiología , Modelos Biológicos , Mapeo de Interacción de Proteínas/métodos , Proteoma/fisiología , Animales , Simulación por Computador , Regulación de la Expresión Génica/fisiología , Humanos , Fenotipo
19.
Microb Cell Fact ; 16(1): 204, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29145855

RESUMEN

BACKGROUND: There is a need to replace petroleum-derived with sustainable feedstocks for chemical production. Certain biomass feedstocks can meet this need as abundant, diverse, and renewable resources. Specific ionic liquids (ILs) can play a role in this process as promising candidates for chemical pretreatment and deconstruction of plant-based biomass feedstocks as they efficiently release carbohydrates which can be fermented. However, the most efficient pretreatment ILs are highly toxic to biological systems, such as microbial fermentations, and hinder subsequent bioprocessing of fermentative sugars obtained from IL-treated biomass. METHODS: To generate strains capable of tolerating residual ILs present in treated feedstocks, a tolerance adaptive laboratory evolution (TALE) approach was developed and utilized to improve growth of two different Escherichia coli strains, DH1 and K-12 MG1655, in the presence of two different ionic liquids, 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) and 1-butyl-3-methylimidazolium chloride ([C4C1Im]Cl). For multiple parallel replicate populations of E. coli, cells were repeatedly passed to select for improved fitness over the course of approximately 40 days. Clonal isolates were screened and the best performing isolates were subjected to whole genome sequencing. RESULTS: The most prevalent mutations in tolerant clones occurred in transport processes related to the functions of mdtJI, a multidrug efflux pump, and yhdP, an uncharacterized transporter. Additional mutations were enriched in processes such as transcriptional regulation and nucleotide biosynthesis. Finally, the best-performing strains were compared to previously characterized tolerant strains and showed superior performance in tolerance of different IL and media combinations (i.e., cross tolerance) with robust growth at 8.5% (w/v) and detectable growth up to 11.9% (w/v) [C2C1Im][OAc]. CONCLUSION: The generated strains thus represent the best performing platform strains available for bioproduction utilizing IL-treated renewable substrates, and the TALE method was highly successful in overcoming the general issue of substrate toxicity and has great promise for use in tolerance engineering.


Asunto(s)
Escherichia coli/metabolismo , Líquidos Iónicos/química , Laboratorios
20.
Microb Cell Fact ; 15: 53, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26980206

RESUMEN

BACKGROUND: In the future, oil- and gas-derived polymers may be replaced with bio-based polymers, produced from renewable feedstocks using engineered cell factories. Acrylic acid and acrylic esters with an estimated world annual production of approximately 6 million tons by 2017 can be derived from 3-hydroxypropionic acid (3HP), which can be produced by microbial fermentation. For an economically viable process 3HP must be produced at high titer, rate and yield and preferably at low pH to minimize downstream processing costs. RESULTS: Here we describe the metabolic engineering of baker's yeast Saccharomyces cerevisiae for biosynthesis of 3HP via a malonyl-CoA reductase (MCR)-dependent pathway. Integration of multiple copies of MCR from Chloroflexus aurantiacus and of phosphorylation-deficient acetyl-CoA carboxylase ACC1 genes into the genome of yeast increased 3HP titer fivefold in comparison with single integration. Furthermore we optimized the supply of acetyl-CoA by overexpressing native pyruvate decarboxylase PDC1, aldehyde dehydrogenase ALD6, and acetyl-CoA synthase from Salmonella enterica SEacs (L641P). Finally we engineered the cofactor specificity of the glyceraldehyde-3-phosphate dehydrogenase to increase the intracellular production of NADPH at the expense of NADH and thus improve 3HP production and reduce formation of glycerol as by-product. The final strain produced 9.8 ± 0.4 g L(-1) 3HP with a yield of 13% C-mol C-mol(-1) glucose after 100 h in carbon-limited fed-batch cultivation at pH 5. The 3HP-producing strain was characterized by (13)C metabolic flux analysis and by transcriptome analysis, which revealed some unexpected consequences of the undertaken metabolic engineering strategy, and based on this data, future metabolic engineering directions are proposed. CONCLUSIONS: In this study, S. cerevisiae was engineered for high-level production of 3HP by increasing the copy numbers of biosynthetic genes and improving flux towards precursors and redox cofactors. This strain represents a good platform for further optimization of 3HP production and hence an important step towards potential commercial bio-based production of 3HP.


Asunto(s)
Ácido Láctico/análogos & derivados , Ingeniería Metabólica/métodos , Oxidorreductasas/metabolismo , Saccharomyces cerevisiae , Chloroflexus/enzimología , Chloroflexus/genética , Regulación Fúngica de la Expresión Génica , Ácido Láctico/biosíntesis , Redes y Vías Metabólicas , Organismos Modificados Genéticamente , Oxidación-Reducción , Oxidorreductasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Salmonella enterica/enzimología , Salmonella enterica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA