Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Pharm Res ; 41(4): 651-672, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519817

RESUMEN

BACKGROUND AND PURPOSE: There is concern that subvisible aggregates in biotherapeutic drug products pose a risk to patient safety. We investigated the threshold of biotherapeutic aggregates needed to induce immunogenic responses. METHODS AND RESULTS: Highly aggregated samples were tested in cell-based assays and induced cellular responses in a manner that depended on the number of particles. The threshold of immune activation varied by disease state (cancer, rheumatoid arthritis, allergy), concomitant therapies, and particle number. Compared to healthy donors, disease state patients showed an equal or lower response at the late phase (7 days), suggesting they may not have a higher risk of responding to aggregates. Xeno-het mice were used to assess the threshold of immune activation in vivo. Although highly aggregated samples (~ 1,600,000 particles/mL) induced a weak and transient immunogenic response in mice, a 100-fold dilution of this sample (~ 16,000 particles/mL) did not induce immunogenicity. To confirm this result, subvisible particles (up to ~ 18,000 particles/mL, containing aggregates and silicone oil droplets) produced under representative administration practices (created upon infusion of a drug product through an IV catheter) did not induce a response in cell-based assays or appear to increase the rate of adverse events or immunogenicity during phase 3 clinical trials. CONCLUSION: The ability of biotherapeutic aggregates to elicit an immune response in vitro, in vivo, and in the clinic depends on high numbers of particles. This suggests that there is a high threshold for aggregates to induce an immunogenic response which is well beyond that seen in standard biotherapeutic drug products.


Asunto(s)
Formación de Anticuerpos , Humanos , Ratones , Animales , Preparaciones Farmacéuticas
2.
Nat Mater ; 20(5): 593-605, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33589798

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to nearly every corner of the globe, causing societal instability. The resultant coronavirus disease 2019 (COVID-19) leads to fever, sore throat, cough, chest and muscle pain, dyspnoea, confusion, anosmia, ageusia and headache. These can progress to life-threatening respiratory insufficiency, also affecting the heart, kidney, liver and nervous systems. The diagnosis of SARS-CoV-2 infection is often confused with that of influenza and seasonal upper respiratory tract viral infections. Due to available treatment strategies and required containments, rapid diagnosis is mandated. This Review brings clarity to the rapidly growing body of available and in-development diagnostic tests, including nanomaterial-based tools. It serves as a resource guide for scientists, physicians, students and the public at large.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2 , Anticuerpos Antivirales/sangre , Antígenos Virales/análisis , Encéfalo/diagnóstico por imagen , COVID-19/diagnóstico por imagen , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19/métodos , Prueba Serológica para COVID-19/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Pulmón/diagnóstico por imagen , Metagenómica/métodos , Nanoestructuras , Nanotecnología , Pandemias , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Carga Viral , Esparcimiento de Virus
3.
J Neuroinflammation ; 18(1): 272, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34798897

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by pathological deposition of misfolded self-protein amyloid beta (Aß) which in kind facilitates tau aggregation and neurodegeneration. Neuroinflammation is accepted as a key disease driver caused by innate microglia activation. Recently, adaptive immune alterations have been uncovered that begin early and persist throughout the disease. How these occur and whether they can be harnessed to halt disease progress is unclear. We propose that self-antigens would induct autoreactive effector T cells (Teffs) that drive pro-inflammatory and neurodestructive immunity leading to cognitive impairments. Here, we investigated the role of effector immunity and how it could affect cellular-level disease pathobiology in an AD animal model. METHODS: In this report, we developed and characterized cloned lines of amyloid beta (Aß) reactive type 1 T helper (Th1) and type 17 Th (Th17) cells to study their role in AD pathogenesis. The cellular phenotype and antigen-specificity of Aß-specific Th1 and Th17 clones were confirmed using flow cytometry, immunoblot staining and Aß T cell epitope loaded haplotype-matched major histocompatibility complex II IAb (MHCII-IAb-KLVFFAEDVGSNKGA) tetramer binding. Aß-Th1 and Aß-Th17 clones were adoptively transferred into APP/PS1 double-transgenic mice expressing chimeric mouse/human amyloid precursor protein and mutant human presenilin 1, and the mice were assessed for memory impairments. Finally, blood, spleen, lymph nodes and brain were harvested for immunological, biochemical, and histological analyses. RESULTS: The propagated Aß-Th1 and Aß-Th17 clones were confirmed stable and long-lived. Treatment of APP/PS1 mice with Aß reactive Teffs accelerated memory impairment and systemic inflammation, increased amyloid burden, elevated microglia activation, and exacerbated neuroinflammation. Both Th1 and Th17 Aß-reactive Teffs progressed AD pathology by downregulating anti-inflammatory and immunosuppressive regulatory T cells (Tregs) as recorded in the periphery and within the central nervous system. CONCLUSIONS: These results underscore an important pathological role for CD4+ Teffs in AD progression. We posit that aberrant disease-associated effector T cell immune responses can be controlled. One solution is by Aß reactive Tregs.


Asunto(s)
Enfermedad de Alzheimer/patología , Linfocitos T CD4-Positivos/patología , Presenilina-1/genética , Precursor de Proteína beta-Amiloide/genética , Amiloidosis/patología , Animales , Trastornos del Conocimiento/patología , Trastornos del Conocimiento/psicología , Inflamación/genética , Ratones , Ratones Transgénicos , Linfocitos T Reguladores/inmunología , Células TH1/inmunología , Células TH1/patología , Células Th17/inmunología , Células Th17/patología
4.
PLoS Pathog ; 12(1): e1005356, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26808628

RESUMEN

Persistent viral infections are simultaneously associated with chronic inflammation and highly potent immunosuppressive programs mediated by IL-10 and PDL1 that attenuate antiviral T cell responses. Inhibiting these suppressive signals enhances T cell function to control persistent infection; yet, the underlying signals and mechanisms that program immunosuppressive cell fates and functions are not well understood. Herein, we use lymphocytic choriomeningitis virus infection (LCMV) to demonstrate that the induction and functional programming of immunosuppressive dendritic cells (DCs) during viral persistence are separable mechanisms programmed by factors primarily considered pro-inflammatory. IFNγ first induces the de novo development of naive monocytes into DCs with immunosuppressive potential. Type I interferon (IFN-I) then directly targets these newly generated DCs to program their potent T cell immunosuppressive functions while simultaneously inhibiting conventional DCs with T cell stimulating capacity. These mechanisms of monocyte conversion are constant throughout persistent infection, establishing a system to continuously interpret and shape the immunologic environment. MyD88 signaling was required for the differentiation of suppressive DCs, whereas inhibition of stimulatory DCs was dependent on MAVS signaling, demonstrating a bifurcation in the pathogen recognition pathways that promote distinct elements of IFN-I mediated immunosuppression. Further, a similar suppressive DC origin and differentiation was also observed in Mycobacterium tuberculosis infection, HIV infection and cancer. Ultimately, targeting the underlying mechanisms that induce immunosuppression could simultaneously prevent multiple suppressive signals to further restore T cell function and control persistent infections.


Asunto(s)
Células Dendríticas/inmunología , Tolerancia Inmunológica/inmunología , Interferones/inmunología , Virosis/inmunología , Animales , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , VIH , Infecciones por VIH/inmunología , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias/inmunología , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Linfocitos T/inmunología , Tuberculosis/inmunología
5.
Infect Control Hosp Epidemiol ; 45(4): 422-428, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37782036

RESUMEN

BACKGROUND: The Society for Healthcare Epidemiology of America (SHEA) is a leading medical society for infection prevention and antibiotic stewardship. This descriptive study evaluated speaker demographics at the annual SHEA Spring conferences from 2019 to 2022. METHODS: This was a retrospective, descriptive analysis of the demographic composition of speakers at the annual SHEA Spring conferences between 2019 and 2022, excluding the cancelled 2020 conference. Self-reported demographics were available for gender, race, ethnicity, age, primary practice setting, and professional degrees in speaker and membership categories. RESULTS: In total, 447 speaker slots were filled by 305 unique speakers over 3 years. Average annual membership included 55.2% female, 44.8% male, 69.3% White, 21.4% Asian, 6.0% Hispanic/Latino, 2.9% Black, and 0.4% American Indian/Alaska Native or Native Hawaiian/Pacific Islander (AIAN/NHPI); 48.9% did not report a race or ethnicity. Speakers during the same period were 63.5% female, 36.5% male, 68.2% White, 13.3% Asian, 3.8% Black, 3.4% Hispanic/Latino, 0.8% AIAN/NHPI; 13.4% did not report race or ethnicity. In 2021, pharmacists represented 11.6% of speakers (and 2.9% of members) and members with nondoctoral degrees represented 11.6% of speakers (and 21.5% of members) (P < .0001). In each year, we detected underrepresentation of community and private-practice speakers relative to membership (eg, in 2022, 4.3% of speakers vs 15.7% of members; P < .05). CONCLUSIONS: The SHEA Spring conferences demonstrated an increase in pharmacist speakers over time, but speakers from community hospitals and with nondoctoral degrees remain underrepresented relative to membership. Racial and ethnic minoritized individuals remain underrepresented as members and speakers. Intentional interventions are needed to consistently achieve equitable speaker representation across multiple demographic groups.


Asunto(s)
Atención a la Salud , Etnicidad , Humanos , Masculino , Femenino , Estados Unidos , Estudios Retrospectivos , Sociedades Médicas
6.
Methods Mol Biol ; 2407: 429-445, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34985679

RESUMEN

First identified as a viral defense mechanism, clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) has been transformed into a gene-editing tool. It now affords promise in the treatment and potential eradication of a range of divergent genetic, cancer, infectious, and degenerative diseases. Adapting CRISPR-Cas into a programmable endonuclease directed guide RNA (gRNA) has attracted international attention. It was recently awarded the 2020 Nobel Prize in Chemistry. The limitations of this technology have also been identified and work has been made in providing potential remedies. For treatment of the human immunodeficiency virus type one (HIV-1), in particular, a CRISPR-Cas9 approach was adapted to target then eliminate latent proviral DNA. To this end, we reviewed the promise and perils of CRISPR-Cas gene-editing strategies for HIV-1 elimination. Obstacles include precise delivery to reservoir tissue and cell sites of latent HIV-1 as well as assay sensitivity and specificity. The detection and consequent excision of common viral strain sequences and the avoidance of off-target activity will serve to facilitate a final goal of HIV-1 DNA elimination and accelerate testing in infected animals ultimately for use in man.


Asunto(s)
Infecciones por VIH , VIH-1 , Sistemas CRISPR-Cas/genética , Edición Génica , VIH-1/genética , ARN Guía de Kinetoplastida/genética , Latencia del Virus
7.
EBioMedicine ; 73: 103678, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34774454

RESUMEN

BACKGROUND: A barrier to HIV-1 cure rests in the persistence of proviral DNA in infected CD4+ leukocytes. The high HIV-1 mutation rate leads to viral diversity, immune evasion, and consequent antiretroviral drug resistance. While CRISPR-spCas9 can eliminate latent proviral DNA, its efficacy is limited by HIV strain diversity and precision target cell delivery. METHODS: A library of guide RNAs (gRNAs) designed to disrupt five HIV-1 exons (tat1-2/rev1-2/gp41) was constructed. The gRNAs were derived from a conseensus sequence of the transcriptional regulator tat from 4004 HIV-1 strains. Efficacy was affirmed by gRNA cell entry through transfection, electroporation, or by lentivirus or lipid nanoparticle (LNP) delivery. Treated cells were evaluated for viral excision by monitoring HIV-1 DNA, RNA, protein, and progeny virus levels. FINDINGS: Virus was reduced in all transmitted founder strains by 82 and 94% after CRISPR TatDE transfection or lentivirus treatments, respectively. No recorded off-target cleavages were detected. Electroporation of TatDE ribonucleoprotein and delivery of LNP TatDE gRNA and spCas9 mRNA to latently infected cells resulted in up to 100% viral excision. Protection against HIV-1-challenge or induction of virus during latent infection, in primary or transformed CD4+ T cells or monocytes was achieved. We propose that multi-exon gRNA TatDE disruption delivered by LNPs enables translation for animal and human testing. INTERPRETATION: These results provide "proof of concept' for CRISPR gRNA treatments for HIV-1 elimination. The absence of full-length viral DNA by LNP delivery paired with undetectable off-target affirms the importance of payload delivery for effective viral gene editing. FUNDING: The work was supported by the University of Nebraska Foundation, including donations from the Carol Swarts, M.D. Emerging Neuroscience Research Laboratory, the Margaret R. Larson Professorship, and individual donor support from the Frances and Louie Blumkin Foundation and from Harriet Singer. The research received support from National Institutes of Health grants T32 NS105594, 5R01MH121402, 1R01Al158160, R01 DA054535, PO1 DA028555, R01 NS126089, R01 NS36126, PO1 MH64570, P30 MH062261, and 2R01 NS034239.


Asunto(s)
Sistemas CRISPR-Cas , Exones , Edición Génica , Infecciones por VIH/terapia , Infecciones por VIH/virología , VIH-1/genética , Línea Celular , Secuencia Conservada , Técnica del Anticuerpo Fluorescente , Marcación de Gen , Genes Reporteros , Terapia Genética , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Genoma Viral , Humanos , Liposomas , Macrófagos/metabolismo , Macrófagos/virología , Nanopartículas , Provirus/genética , Interferencia de ARN , ARN Mensajero/administración & dosificación , ARN Mensajero/genética , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , ARN Guía de Sistemas CRISPR-Cas
8.
Nanotheranostics ; 5(4): 417-430, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33972918

RESUMEN

Background: Delivery of long-acting nanoformulated antiretroviral drugs (ARVs) to human immunodeficiency virus type one cell and tissue reservoirs underlies next generation antiretroviral therapeutics. Nanotheranostics, comprised of trackable nanoparticle adjuncts, can facilitate ARV delivery through real-time drug tracking made possible through bioimaging platforms. Methods: To model HIV-1 therapeutic delivery, europium sulfide (EuS) nanoprobes were developed, characterized and then deployed to cells, tissues, and rodents. Tests were performed with nanoformulated rilpivirine (NRPV), a non-nucleoside reverse transcriptase inhibitor (NNRTI) used clinically to suppress or prevent HIV-1 infection. First, CD4+ T cells and monocyte-derived macrophages were EuS-treated with and without endocytic blockers to identify nanoprobe uptake into cells. Second, Balb/c mice were co-dosed with NRPV and EuS or lutetium177-doped EuS (177LuEuS) theranostic nanoparticles to assess NRPV biodistribution via mass spectrometry. Third, single photon emission computed tomography (SPECT-CT) and magnetic resonance imaging (MRI) bioimaging were used to determine nanotheranostic and NRPV anatomic redistribution over time. Results: EuS nanoprobes and NRPV entered cells through dynamin-dependent pathways. SPECT-CT and MRI identified biodistribution patterns within the reticuloendothelial system for EuS that was coordinate with NRPV trafficking. Conclusions: EuS nanoprobes parallel the uptake and biodistribution of NRPV. These data support their use in modeling NRPV delivery to improve treatment strategies.


Asunto(s)
Fármacos Anti-VIH , Portadores de Fármacos , Europio , Infecciones por VIH , VIH-1/metabolismo , Imagen por Resonancia Magnética , Nanopartículas , Rilpivirina , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Sulfuros , Animales , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacocinética , Fármacos Anti-VIH/farmacología , Línea Celular , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Europio/química , Europio/farmacocinética , Europio/farmacología , Infecciones por VIH/diagnóstico por imagen , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/metabolismo , Infecciones por VIH/patología , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Nanopartículas/uso terapéutico , Rilpivirina/química , Rilpivirina/farmacocinética , Rilpivirina/farmacología , Sulfuros/química , Sulfuros/farmacocinética , Sulfuros/farmacología
9.
FEMS Microbiol Rev ; 45(6)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34160586

RESUMEN

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to coronavirus disease 2019 (COVID-19). Virus-specific immunity controls infection, transmission and disease severity. With respect to disease severity, a spectrum of clinical outcomes occur associated with age, genetics, comorbidities and immune responses in an infected person. Dysfunctions in innate and adaptive immunity commonly follow viral infection. These are heralded by altered innate mononuclear phagocyte differentiation, activation, intracellular killing and adaptive memory, effector, and regulatory T cell responses. All of such affect viral clearance and the progression of end-organ disease. Failures to produce effective controlled antiviral immunity leads to life-threatening end-organ disease that is typified by the acute respiratory distress syndrome. The most effective means to contain SARS-CoV-2 infection is by vaccination. While an arsenal of immunomodulators were developed for control of viral infection and subsequent COVID-19 disease, further research is required to enable therapeutic implementation.


Asunto(s)
COVID-19 , Inmunidad Adaptativa , Humanos , Inmunidad Innata , SARS-CoV-2
10.
J Neuroimmune Pharmacol ; 16(1): 12-37, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33403500

RESUMEN

The COVID-19 pandemic has affected more than 38 million people world-wide by person to person transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therapeutic and preventative strategies for SARS-CoV-2 remains a significant challenge. Within the past several months, effective treatment options have emerged and now include repurposed antivirals, corticosteroids and virus-specific antibodies. The latter has included convalescence plasma and monoclonal antibodies. Complete viral eradication will be achieved through an effective, safe and preventative vaccine. To now provide a comprehensive summary for each of the pharmacotherapeutics and preventative strategies being offered or soon to be developed for SARS-CoV-2.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Anticuerpos Antivirales/uso terapéutico , Antivirales/farmacología , COVID-19/prevención & control , COVID-19/transmisión , Vacunas contra la COVID-19 , Reposicionamiento de Medicamentos , Humanos
11.
Adv Drug Deliv Rev ; 171: 215-239, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33428995

RESUMEN

The SARS-CoV-2 global pandemic has seen rapid spread, disease morbidities and death associated with substantive social, economic and societal impacts. Treatments rely on re-purposed antivirals and immune modulatory agents focusing on attenuating the acute respiratory distress syndrome. No curative therapies exist. Vaccines remain the best hope for disease control and the principal global effort to end the pandemic. Herein, we summarize those developments with a focus on the role played by nanocarrier delivery.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Portadores de Fármacos/administración & dosificación , Nanocápsulas/administración & dosificación , SARS-CoV-2/efectos de los fármacos , Animales , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Sistemas de Liberación de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/tendencias , Humanos , SARS-CoV-2/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología
12.
J Neuroimmune Pharmacol ; 16(2): 270-288, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33544324

RESUMEN

Extracellular vesicles (EVs) are the common designation for ectosomes, microparticles and microvesicles serving dominant roles in intercellular communication. Both viable and dying cells release EVs to the extracellular environment for transfer of cell, immune and infectious materials. Defined morphologically as lipid bi-layered structures EVs show molecular, biochemical, distribution, and entry mechanisms similar to viruses within cells and tissues. In recent years their functional capacities have been harnessed to deliver biomolecules and drugs and immunological agents to specific cells and organs of interest or disease. Interest in EVs as putative vaccines or drug delivery vehicles are substantial. The vesicles have properties of receptors nanoassembly on their surface. EVs can interact with specific immunocytes that include antigen presenting cells (dendritic cells and other mononuclear phagocytes) to elicit immune responses or affect tissue and cellular homeostasis or disease. Due to potential advantages like biocompatibility, biodegradation and efficient immune activation, EVs have gained attraction for the development of treatment or a vaccine system against the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) infection. In this review efforts to use EVs to contain SARS CoV-2 and affect the current viral pandemic are discussed. An emphasis is made on mesenchymal stem cell derived EVs' as a vaccine candidate delivery system.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Sistemas de Liberación de Medicamentos/tendencias , Vesículas Extracelulares , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/administración & dosificación , Antivirales/metabolismo , COVID-19/inmunología , COVID-19/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Humanos , Inmunidad Celular/efectos de los fármacos , Inmunidad Celular/fisiología , Factores Inmunológicos/administración & dosificación , Factores Inmunológicos/metabolismo , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo
13.
Mol Neurodegener ; 15(1): 32, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32503641

RESUMEN

Emerging evidence demonstrates that adaptive immunity influences the pathobiology of neurodegenerative disorders. Misfolded aggregated self-proteins can break immune tolerance leading to the induction of autoreactive effector T cells (Teffs) with associated decreases in anti-inflammatory neuroprotective regulatory T cells (Tregs). An imbalance between Teffs and Tregs leads to microglial activation, inflammation and neuronal injury. The cascade of such a disordered immunity includes the drainage of the aggregated protein antigens into cervical lymph nodes serving to amplify effector immune responses. Both preclinical and clinical studies demonstrate transformation of this altered immunity for therapeutic gain. We posit that the signs and symptoms of common neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, and stroke can be attenuated by boosting Treg activities.


Asunto(s)
Esclerosis Amiotrófica Lateral/terapia , Enfermedades Neurodegenerativas/terapia , Neuroprotección , Linfocitos T Reguladores/inmunología , Esclerosis Amiotrófica Lateral/inmunología , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Humanos , Inflamación/metabolismo , Enfermedades Neurodegenerativas/inmunología , Enfermedad de Parkinson/inmunología , Enfermedad de Parkinson/metabolismo
14.
J Neuroimmune Pharmacol ; 15(3): 359-386, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32696264

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of coronavirus disease 2019 (COVID-19). SARS-CoV-2, is a positive-sense single-stranded RNA virus with epithelial cell and respiratory system proclivity. Like its predecessor, SARS-CoV, COVID-19 can lead to life-threatening disease. Due to wide geographic impact affecting an extremely high proportion of the world population it was defined by the World Health Organization as a global public health pandemic. The infection is known to readily spread from person-to-person. This occurs through liquid droplets by cough, sneeze, hand-to-mouth-to-eye contact and through contaminated hard surfaces. Close human proximity accelerates SARS-CoV-2 spread. COVID-19 is a systemic disease that can move beyond the lungs by blood-based dissemination to affect multiple organs. These organs include the kidney, liver, muscles, nervous system, and spleen. The primary cause of SARS-CoV-2 mortality is acute respiratory distress syndrome initiated by epithelial infection and alveolar macrophage activation in the lungs. The early cell-based portal for viral entry is through the angiotensin-converting enzyme 2 receptor. Viral origins are zoonotic with genomic linkages to the bat coronaviruses but without an identifiable intermediate animal reservoir. There are currently few therapeutic options, and while many are being tested, although none are effective in curtailing the death rates. There is no available vaccine yet. Intense global efforts have targeted research into a better understanding of the epidemiology, molecular biology, pharmacology, and pathobiology of SARS-CoV-2. These fields of study will provide the insights directed to curtailing this disease outbreak with intense international impact. Graphical Abstract.


Asunto(s)
Infecciones por Coronavirus , Pandemias , Neumonía Viral , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/fisiopatología , Humanos , Neumonía Viral/epidemiología , Neumonía Viral/fisiopatología , SARS-CoV-2
15.
Biomaterials ; 231: 119669, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31865227

RESUMEN

Antiretroviral therapy (ART) has improved the quality and duration of life for people living with human immunodeficiency virus (HIV) infection. However, limitations in drug efficacy, emergence of viral mutations and the paucity of cell-tissue targeting remain. We posit that to maximize ART potency and therapeutic outcomes newer drug formulations that reach HIV cellular reservoirs need be created. In a step towards achieving this goal we harnessed the aggregation-induced emission (AIE) property of the non-nucleoside reverse transcriptase inhibitor rilpivirine (RPV) and used it as a platform for drug cell and subcellular tracking. RPV nanocrystals were created with endogenous AIE properties enabling the visualization of intracellular particles in cell and tissue-based assays. The intact drug crystals were easily detected in CD4+ T cells and macrophages, the natural viral target cells, by flow cytometry and ultraperformance liquid chromatography tandem mass spectrometry. We conclude that AIE can be harnessed to monitor cell biodistribution of selective antiretroviral drug nanocrystals.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , VIH-1 , Nanopartículas , Fármacos Anti-VIH/farmacología , Farmacorresistencia Viral , Infecciones por VIH/tratamiento farmacológico , Humanos , Inhibidores de la Transcriptasa Inversa , Rilpivirina , Distribución Tisular
16.
Theranostics ; 10(2): 630-656, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31903142

RESUMEN

Human immunodeficiency virus theranostics facilitates the development of long acting (LA) antiretroviral drugs (ARVs) by defining drug-particle cell depots. Optimal drug formulations are made possible based on precise particle composition, structure, shape and size. Through the creation of rod-shaped particles of defined sizes reflective of native LA drugs, theranostic probes can be deployed to measure particle-cell and tissue biodistribution, antiretroviral activities and drug retention. Methods: Herein, we created multimodal rilpivirine (RPV) 177lutetium labeled bismuth sulfide nanorods (177LuBSNRs) then evaluated their structure, morphology, configuration, chemical composition, biological responses and adverse reactions. Particle biodistribution was analyzed by single photon emission computed tomography (SPECT/CT) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) imaging. Results: Nanoformulated RPV and BSNRs-RPV particles showed comparable physicochemical and cell biological properties. Drug-particle pharmacokinetics (PK) and biodistribution in lymphoid tissue macrophages proved equivalent, one with the other. Rapid particle uptake and tissue distribution were observed, without adverse reactions, in primary blood-derived and tissue macrophages. The latter was seen within the marginal zones of spleen. Conclusions: These data, taken together, support the use of 177LuBSNRs as theranostic probes as a rapid assessment tool for PK LA ARV measurements.


Asunto(s)
Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Lutecio/farmacocinética , Macrófagos/metabolismo , Nanopartículas/administración & dosificación , Radioisótopos/farmacocinética , Rilpivirina/farmacocinética , Nanomedicina Teranóstica/métodos , Animales , Células Cultivadas , Sistemas de Liberación de Medicamentos/métodos , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/aislamiento & purificación , VIH-1/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Radiofármacos/farmacocinética , Inhibidores de la Transcriptasa Inversa/farmacocinética , Rilpivirina/farmacología , Distribución Tisular
17.
J Neuroimmune Pharmacol ; 14(1): 52-67, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29572681

RESUMEN

Macrophages serve as host cells, inflammatory disease drivers and drug runners for human immunodeficiency virus infection and treatments. Low-level viral persistence continues in these cells in the absence of macrophage death. However, the cellular microenvironment changes as a consequence of viral infection with aberrant production of pro-inflammatory factors and promotion of oxidative stress. These herald viral spread from macrophages to neighboring CD4+ T cells and end organ damage. Virus replicates in tissue reservoir sites that include the nervous, pulmonary, cardiovascular, gut, and renal organs. However, each of these events are held in check by antiretroviral therapy. A hidden and often overlooked resource of the macrophage rests in its high cytoplasmic nuclear ratios that allow the cell to sense its environment and rid it of the cellular waste products and microbial pathogens it encounters. These phagocytic and intracellular killing sensing mechanisms can also be used in service as macrophages serve as cellular carriage depots for antiretroviral nanoparticles and are able to deliver medicines to infectious disease sites with improved therapeutic outcomes. These undiscovered cellular functions can lead to reductions in persistent infection and may potentially facilitate the eradication of residual virus to eliminate disease.


Asunto(s)
Infecciones por VIH/virología , Macrófagos/metabolismo , Macrófagos/virología , Animales , Sistemas de Liberación de Medicamentos , VIH/fisiología , Humanos , Latencia del Virus/fisiología
18.
Biomaterials ; 223: 119476, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31525692

RESUMEN

A long acting (LA) hydrophobic and lipophilic lamivudine (3TC) was created as a phosphoramidate pronucleotide (designated M23TC). M23TC improved intracellular delivery of active triphosphate metabolites and enhanced antiretroviral and pharmacokinetic (PK) profiles over the native drug. A single treatment of human monocyte derived macrophages (MDM) with nanoformulated M23TC (NM23TC) improved drug uptake, retention, intracellular 3TC triphosphates and antiretroviral activities in MDM and CD4+ T cells. PK tests of NM23TC administered to Sprague Dawley rats demonstrated sustained prodrug and drug triphosphate levels in blood and tissues for 30 days. The development of NM23TC remains a substantive step forward in producing LA slow effective release antiretrovirals for future clinical translation.


Asunto(s)
Fármacos Anti-VIH/administración & dosificación , Infecciones por VIH/tratamiento farmacológico , Lamivudine/administración & dosificación , Macrófagos/efectos de los fármacos , Monocitos/efectos de los fármacos , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Células Cultivadas , VIH-1 , Humanos , Ganglios Linfáticos/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Ratones , Nanomedicina/métodos , Nanopartículas/química , Profármacos , Conejos , Ratas , Ratas Sprague-Dawley , Bazo/efectos de los fármacos
19.
Biomaterials ; 222: 119441, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31472458

RESUMEN

While antiretroviral therapy (ART) has revolutionized treatment and prevention of human immunodeficiency virus type one (HIV-1) infection, regimen adherence, viral mutations, drug toxicities and access stigma and fatigue are treatment limitations. These have led to new opportunities for the development of long acting (LA) ART including implantable devices and chemical drug modifications. Herein, medicinal and formulation chemistry were used to develop LA prodrug nanoformulations of emtricitabine (FTC). A potent lipophilic FTC phosphoramidate prodrug (M2FTC) was synthesized then encapsulated into a poloxamer surfactant (NM2FTC). These modifications extended the biology, apparent drug half-life and antiretroviral activities of the formulations. NM2FTC demonstrated a >30-fold increase in macrophage and CD4+ T cell drug uptake with efficient conversion to triphosphates (FTC-TP). Intracellular FTC-TP protected macrophages against an HIV-1 challenge for 30 days. A single intramuscular injection of NM2FTC, at 45 mg/kg native drug equivalents, into Sprague Dawley rats resulted in sustained prodrug levels in blood, liver, spleen and lymph nodes and FTC-TP in lymph node and spleen cells at one month. In contrast, native FTC-TPs was present for one day. These results are an advance in the transformation of FTC into a LA agent.


Asunto(s)
Antirretrovirales/química , Antirretrovirales/síntesis química , Emtricitabina/química , Profármacos/química , Profármacos/síntesis química , Amidas/química , Animales , Humanos , Masculino , Ácidos Fosfóricos/química , Poloxámero/química , Polifosfatos/química , Ratas , Ratas Sprague-Dawley
20.
J Control Release ; 311-312: 201-211, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31491432

RESUMEN

Antiretroviral therapy requires lifelong daily dosing to attain viral suppression, restore immune function, and improve quality of life. As a treatment alternative, long-acting (LA) antiretrovirals can sustain therapeutic drug concentrations in blood for prolonged time periods. The success of recent clinical trials for LA parenteral cabotegravir and rilpivirine highlight the emergence of these new therapeutic options. Further optimization can improve dosing frequency, lower injection volumes, and facilitate drug-tissue distributions. To this end, we report the synthesis of a library of RPV prodrugs designed to sustain drug plasma concentrations and improved tissue biodistribution. The lead prodrug M3RPV was nanoformulated into the stable LA injectable NM3RPV. NM3RPV treatment led to RPV plasma concentrations above the protein-adjusted 90% inhibitory concentration for 25 weeks with substantial tissue depots after a single intramuscular injection in BALB/cJ mice. NM3RPV elicited 13- and 26-fold increases in the RPV apparent half-life and mean residence time compared to native drug formulation. Taken together, proof-of-concept is provided that nanoformulated RPV prodrugs can extend the apparent drug half-life and improve tissue biodistribution. These results warrant further development for human use.


Asunto(s)
Fármacos Anti-VIH/administración & dosificación , Nanopartículas/administración & dosificación , Profármacos/administración & dosificación , Rilpivirina/administración & dosificación , Animales , Fármacos Anti-VIH/farmacocinética , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/farmacocinética , VIH-1/efectos de los fármacos , Humanos , Macaca mulatta , Macrófagos/metabolismo , Masculino , Ratones Endogámicos BALB C , Profármacos/farmacocinética , Rilpivirina/farmacocinética , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA