Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Genet ; 4(2): e29, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18282108

RESUMEN

Gene duplication is a major driver of evolutionary divergence. In most vertebrates a single PAX6 gene encodes a transcription factor required for eye, brain, olfactory system, and pancreas development. In zebrafish, following a postulated whole-genome duplication event in an ancestral teleost, duplicates pax6a and pax6b jointly fulfill these roles. Mapping of the homozygously viable eye mutant sunrise identified a homeodomain missense change in pax6b, leading to loss of target binding. The mild phenotype emphasizes role-sharing between the co-orthologues. Meticulous mapping of isolated BACs identified perturbed synteny relationships around the duplicates. This highlights the functional conservation of pax6 downstream (3') control sequences, which in most vertebrates reside within the introns of a ubiquitously expressed neighbour gene, ELP4, whose pax6a-linked exons have been lost in zebrafish. Reporter transgenic studies in both mouse and zebrafish, combined with analysis of vertebrate sequence conservation, reveal loss and retention of specific cis-regulatory elements, correlating strongly with the diverged expression of co-orthologues, and providing clear evidence for evolution by subfunctionalization.


Asunto(s)
Proteínas del Ojo/genética , Duplicación de Gen , Proteínas de Homeodominio/genética , Factores de Transcripción Paired Box/genética , Proteínas Represoras/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Cromosomas Artificiales Bacterianos/genética , Biología Computacional , Cartilla de ADN/genética , Elementos de Facilitación Genéticos , Evolución Molecular , Anomalías del Ojo/embriología , Anomalías del Ojo/genética , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Genes Reporteros , Prueba de Complementación Genética , Ligamiento Genético , Ratones , Ratones Transgénicos , Modelos Genéticos , Datos de Secuencia Molecular , Mutación Missense , Factor de Transcripción PAX6 , Fenotipo , Homología de Secuencia de Ácido Nucleico , Pez Cebra/anomalías , Pez Cebra/embriología
2.
J Gerontol A Biol Sci Med Sci ; 76(5): 741-749, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33211845

RESUMEN

The aging process is characterized by the presence of high interindividual variation between individuals of the same chronical age prompting a search for biomarkers that capture this heterogeneity. Epigenetic clocks measure changes in DNA methylation levels at specific CpG sites that are highly correlated with calendar age. The discrepancy resulting from the regression of DNA methylation age on calendar age is hypothesized to represent a measure of biological aging with a positive/negative residual signifying age acceleration (AA)/deceleration, respectively. The present study examines the associations of 4 epigenetic clocks-Horvath, Hannum, PhenoAge, GrimAge-with a wide range of clinical phenotypes (walking speed, grip strength, Fried frailty, polypharmacy, Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MOCA), Sustained Attention Reaction Time, 2-choice reaction time), and with all-cause mortality at up to 10-year follow-up, in a sample of 490 participants in the Irish Longitudinal Study on Ageing (TILDA). HorvathAA and HannumAA were not predictive of health; PhenoAgeAA was associated with 4/9 outcomes (walking speed, frailty MOCA, MMSE) in minimally adjusted models, but not when adjusted for other social and lifestyle factors. GrimAgeAA by contrast was associated with 8/9 outcomes (all except grip strength) in minimally adjusted models, and remained a significant predictor of walking speed, .polypharmacy, frailty, and mortality in fully adjusted models. Results indicate that the GrimAge clock represents a step-improvement in the predictive utility of the epigenetic clocks for identifying age-related decline in an array of clinical phenotypes promising to advance precision medicine.


Asunto(s)
Envejecimiento/genética , Epigénesis Genética , Mortalidad , Metilación de ADN , Femenino , Fragilidad , Marcadores Genéticos , Fuerza de la Mano , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Fenotipo , Polifarmacia , Velocidad al Caminar
3.
J Gerontol A Biol Sci Med Sci ; 75(11): 2074-2080, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31821404

RESUMEN

Orthostatic hypotension (OH) is associated with increased risk of trauma and cardiovascular events. Recent studies have identified new genetic variants that influence orthostatic blood pressure (BP). The aim of this study was to investigate the associations of candidate gene loci with orthostatic BP responses in older adults. A total of 3,430 participants aged ≥50 years from The Irish Longitudinal Study on Ageing (TILDA) with BP measures and genetic data from 12 single-nucleotide polymorphism (SNP) linked to BP responses were analyzed. Orthostatic BP responses were recorded at each 10 s interval and were defined as OH (SBP drop ≥20 mmHg or DBP drop ≥10 mmHg) at the time-points 40, 90, and 110 s. We defined sustained OH (SOH) as a drop that exceeded consensus BP thresholds for OH at 40, 90, and 110 s after standing. Logistic regression analyses modeled associations between the candidate SNP alleles and OH. We report no significant associations between OH and measured SNPs after correction for multiple comparisons apart from the SNP rs5068 where proportion of the minor allele was significantly different between cases and controls for SOH 40 (p = .002). After adjustment for covariates in a logistic regression, those with the minor G allele (compared to the A allele) had a decreased incidence rate ratio (IRR) for SOH 40 (IRR 0.45, p = .001, 95% CI 0.29-0.72). Only one SNP linked with increased natriuretic peptide concentrations was associated with OH. These results suggest that genetic variants may have a weak impact on OH but needs verification in other population studies.


Asunto(s)
Variación Genética , Hipotensión Ortostática/genética , Anciano , Alelos , Determinación de la Presión Sanguínea , Femenino , Genotipo , Humanos , Irlanda , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Encuestas y Cuestionarios
4.
Neurology ; 94(3): e267-e281, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31827004

RESUMEN

OBJECTIVE: High blood pressure is one of the main modifiable risk factors for dementia. However, there is conflicting evidence regarding the best antihypertensive class for optimizing cognition. Our objective was to determine whether any particular antihypertensive class was associated with a reduced risk of cognitive decline or dementia using comprehensive meta-analysis including reanalysis of original participant data. METHODS: To identify suitable studies, MEDLINE, Embase, and PsycINFO and preexisting study consortia were searched from inception to December 2017. Authors of prospective longitudinal human studies or trials of antihypertensives were contacted for data sharing and collaboration. Outcome measures were incident dementia or incident cognitive decline (classified using the reliable change index method). Data were separated into mid and late-life (>65 years) and each antihypertensive class was compared to no treatment and to treatment with other antihypertensives. Meta-analysis was used to synthesize data. RESULTS: Over 50,000 participants from 27 studies were included. Among those aged >65 years, with the exception of diuretics, we found no relationship by class with incident cognitive decline or dementia. Diuretic use was suggestive of benefit in some analyses but results were not consistent across follow-up time, comparator group, and outcome. Limited data precluded meaningful analyses in those ≤65 years of age. CONCLUSION: Our findings, drawn from the current evidence base, support clinical freedom in the selection of antihypertensive regimens to achieve blood pressure goals. CLINICAL TRIALS REGISTRATION: The review was registered with the international prospective register of systematic reviews (PROSPERO), registration number CRD42016045454.


Asunto(s)
Antihipertensivos/uso terapéutico , Demencia/epidemiología , Demencia/etiología , Hipertensión/complicaciones , Hipertensión/tratamiento farmacológico , Anciano , Anciano de 80 o más Años , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/etiología , Femenino , Humanos , Masculino , Persona de Mediana Edad
5.
Epilepsia ; 47(3): 534-42, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16529618

RESUMEN

PURPOSE: Seizures are noted in a significant proportion of cases of de novo, heterozygous, loss-of-function mutations in SOX2, ascertained because of severe bilateral eye malformations. We wished to determine the underlying cerebral phenotype in SOX2 mutation and to test the candidacy of SOX2 as a gene contributing to human epilepsies. METHODS: We examined high-resolution MRI scans in four patients with SOX2 mutations, two of whom had seizures. We determined the Sox2 expression pattern in developing murine brain. We searched for SOX2 mutation in 24 patients with typical hippocampal sclerosis and for common variations in SOX2 in 655 patients without eye disease but with epilepsy, including 91 patients with febrile seizures, 93 with hippocampal sclerosis, and 258 with temporal lobe epilepsy. RESULTS: Striking hippocampal and parahippocampal malformations were seen in all cases, with a history of febrile seizures or epilepsy in two of four cases. The Sox2 expression pattern in developing mouse brain supports the pattern of malformations observed. Mutation screening in patients with epilepsy did not reveal any abnormalities in SOX2. No associations were found between any clinical epilepsy phenotype and common variation in SOX2. CONCLUSIONS: SOX2 haploinsufficiency causes mesial temporal malformation in humans, making SOX2 dysfunction a candidate mechanism for mesial temporal abnormalities associated with chronic epilepsy. However, although mutation of SOX2 in humans causes hippocampal malformation, SOX2 mutation or variation is unlikely to contribute commonly to mesial temporal lobe epilepsy or its structural (hippocampal sclerosis) or historic (febrile seizures) associations in humans.


Asunto(s)
Epilepsia/genética , Proteínas HMGB/genética , Hipocampo/anomalías , Mutación/genética , Factores de Transcripción/genética , Adolescente , Animales , Niño , Epilepsia/diagnóstico , Epilepsia/patología , Epilepsia del Lóbulo Temporal/genética , Anomalías del Ojo/genética , Proteínas del Ojo/genética , Femenino , Lateralidad Funcional , Expresión Génica , Variación Genética , Haplotipos , Hipocampo/patología , Proteínas de Homeodominio/genética , Humanos , Inmunohistoquímica , Imagen por Resonancia Magnética , Masculino , Ratones , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Fenotipo , Proteínas Represoras/genética , Factores de Transcripción SOXB1 , Esclerosis/genética , Esclerosis/patología , Convulsiones Febriles/genética , Lóbulo Temporal/patología
6.
Hum Mol Genet ; 15(9): 1413-22, 2006 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-16543359

RESUMEN

We report heterozygous, loss-of-function SOX2 mutations in three unrelated individuals with Anophthalmia-Esophageal-Genital (AEG) syndrome. One previously reported case [Rogers, R.C. (1988) Unknown cases. Proceedings of the Greenwood Genetic Center. 7, 57.] has a 2.7 Mb deletion encompassing SOX2 and associated with a cryptic translocation t(3;7)(q28;p21.3). The deletion and translocation breakpoints on chromosome 3q are >8.6 Mb apart and both chromosome rearrangements have occurred de novo. Another published case [Petrackova et al. (2004) Association of oesophageal atresia, anophthalmia and renal duplex. Eur. J. Pediatr., 163, 333-334.] has a de novo nonsense mutation, Q55X. A previously unreported case with severe bilateral microphthalmia and oesophageal atresia has a de novo missense mutation, R74P, that alters a highly evolutionarily conserved residue within the high mobility group domain, which is critical for DNA-binding of SOX2. In a yeast one-hybrid assay, this mutation abolishes Sox2-induced activation of the chick delta-crystallin DC5 enhancer. Four other reported AEG syndrome cases were extensively screened and do not have detectable SOX2 mutations. Two of these cases have unilateral eye malformations. SOX2 mutations are known to cause severe bilateral eye malformations but this is the first report implicating loss of function mutations in this transcription factor in oesophageal malformations. SOX2 is expressed in the developing foregut in mouse and zebrafish embryos and an apparently normal pattern of expression is maintained in Shh-/- mouse embryos, suggesting either that Sox2 acts upstream of Shh or functions in a different pathway. Three-dimensional reconstructions of the major morphological events in the developing foregut and eye from Carnegie Stages 12 and 13 human embryos are presented and compared with the data from model organisms. SOX2, with NMYC and CHD7, is now the third transcriptional regulator known to be critical for normal oesophageal development in humans.


Asunto(s)
Anoftalmos/genética , Esófago/anomalías , Genitales Masculinos/anomalías , Proteínas HMGB/genética , Mutación Puntual , Factores de Transcripción/genética , Animales , Anoftalmos/embriología , Anoftalmos/enzimología , Pollos , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Esófago/embriología , Esófago/enzimología , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Genitales Masculinos/embriología , Genitales Masculinos/enzimología , Humanos , Masculino , Ratones , Factores de Transcripción SOXB1 , Síndrome , Pez Cebra
7.
EMBO J ; 21(23): 6560-70, 2002 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-12456662

RESUMEN

In different eukaryotic model systems, chromatin and gene expression are modulated by post-translational modification of histone tails. In this in vivo study, histone methylation and acetylation are investigated along the imprinted mouse genes Snrpn, Igf2r and U2af1-rs1. These imprinted genes all have a CpG-rich regulatory element at which methylation is present on the maternal allele, and originates from the female germ line. At these 'differentially methylated regions' (DMRs), histone H3 on the paternal allele has lysine-4 methylation and is acetylated. On the maternally inherited allele, in contrast, chromatin is marked by hypermethylation on lysine-9 of H3. Allele-specific patterns of lysine-4 and lysine-9 methylation are also detected at other regions of the imprinted loci. For the DMR at the U2af1-rs1 gene, we establish that the methyl-CpG-binding-domain (MBD) proteins MeCP2, MBD1 and MBD3 are associated with the maternal allele. These data support the hypothesis that MBD protein-associated histone deacetylase/chromatin-remodelling complexes are recruited to the parental allele that has methylated DNA and H3-K9 methylation, and are prevented from binding to the opposite allele by H3 lysine-4 methylation.


Asunto(s)
Metilación de ADN , Impresión Genómica , Histonas/metabolismo , Lisina/metabolismo , Proteínas del Tejido Nervioso , Proteínas Nucleares , Ribonucleoproteínas , Animales , Autoantígenos , Histonas/genética , Ratones , Ratones Endogámicos C57BL , Proteínas/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Factor de Empalme U2AF , Proteínas Nucleares snRNP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA