Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 113(19): 5287-92, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27114531

RESUMEN

Retinoschisin (RS1) is involved in cell-cell junctions in the retina, but is unique among known cell-adhesion proteins in that it is a soluble secreted protein. Loss-of-function mutations in RS1 lead to early vision impairment in young males, called X-linked retinoschisis. The disease is characterized by separation of inner retinal layers and disruption of synaptic signaling. Using cryo-electron microscopy, we report the structure at 4.1 Å, revealing double octamer rings not observed before. Each subunit is composed of a discoidin domain and a small N-terminal (RS1) domain. The RS1 domains occupy the centers of the rings, but are not required for ring formation and are less clearly defined, suggesting mobility. We determined the structure of the discoidin rings, consistent with known intramolecular and intermolecular disulfides. The interfaces internal to and between rings feature residues implicated in X-linked retinoschisis, indicating the importance of correct assembly. Based on this structure, we propose that RS1 couples neighboring membranes together through octamer-octamer contacts, perhaps modulated by interactions with other membrane components.


Asunto(s)
Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/ultraestructura , Adhesión Celular , Proteínas del Ojo/química , Proteínas del Ojo/ultraestructura , Uniones Intercelulares/ultraestructura , Retina/química , Retina/ultraestructura , Secuencia de Aminoácidos , Animales , Simulación por Computador , Dimerización , Uniones Intercelulares/química , Ratones , Modelos Biológicos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , Conformación Proteica
2.
J Struct Biol ; 204(2): 360-367, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30030042

RESUMEN

Cryo-electron microscopy (cryoEM) is capable of achieving near-atomic resolution of biomolecular structures due to recent advances in hardware. Despite the long history of image processing software development for cryoEM, uncertainty about best practices and validation remains. The Map Challenge was therefore designed to test the current state of single particle reconstruction. As the first such challenge, the participants were given the freedom to analyze the cases in whichever way they wanted. Therefore, the maps submitted feature different sizes, sampling and orientations, making assessment non-trivial. To be fair, I developed a method to pose all maps in each case in the same configuration with minimal interpolation. I assessed the quality of these maps by visual inspection and Fourier shell correlation (FSC). Comparing the even-odd FSC with an FSC calculated against a reference structure analysis, I concluded that the quality of the maps related more to the user than to other factors, such as the software package used. Poor quality maps suffer either from lack of data or poor choices made by the user. Some maps appear significantly better than a reference or consensus of other maps, indicating overfitting. Best practices to avoid problems include an understanding of the effects of reference map modifications on particle image alignment, and generating appropriate masks. Ultimately, none of the issues revealed in the Map Challenge is insurmountable, as underscored by the excellent quality of reconstructions achieved by a significant number of participants.


Asunto(s)
Microscopía por Crioelectrón/métodos , Procesamiento de Imagen Asistido por Computador , Conformación Proteica , Programas Informáticos
3.
J Struct Biol ; 204(1): 90-95, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29981840

RESUMEN

The Bsoft package is aimed at processing electron micrographs for the determination of the three-dimensional structures of biological specimens. Recent advances in hardware allow us to solve structures to near atomic resolution using single particle analysis (SPA). The Map Challenge offered me an opportunity to test the ability of Bsoft to produce reconstructions from cryo-electron micrographs at the best resolution. I also wanted to understand what needed to be done to work towards full automation with validation. Here, I present two cases for the Map Challenge using Bsoft: ß-galactosidase and GroEL. I processed two independent subsets in each case with resolution-limited alignment. In both cases the reconstructions approached the expected resolution within a few iterations of alignment. I further validated the results by coherency-testing: i.e., that the reconstructions from real particles give better resolutions than reconstructions from the same number of aligned noise images. The key operations requiring attention for full automation are: particle picking, faster accurate alignment, proper mask generation, appropriate map sharpening, and understanding the amount of data needed to reach a desired resolution.


Asunto(s)
Microscopía por Crioelectrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Algoritmos , Programas Informáticos
4.
J Struct Biol ; 204(2): 291-300, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30114512

RESUMEN

The recent successes of cryo-electron microscopy fostered great expectation of solving many new and previously recalcitrant biomolecular structures. However, it also brings with it the danger of compromising the validity of the outcomes if not done properly. The Map Challenge is a first step in assessing the state of the art and to shape future developments in data processing. The organizers presented seven cases for single particle reconstruction, and 27 members of the community responded with 66 submissions. Seven groups analyzed these submissions, resulting in several assessment reports, summarized here. We devised a range of analyses to evaluate the submitted maps, including visual impressions, Fourier shell correlation, pairwise similarity and interpretation through modeling. Unfortunately, we did not find strong trends. We ascribe this to the complexity of the challenge, dealing with multiple cases, software packages and processing approaches. This puts the user in the spotlight, where his/her choices becomes the determinant of map quality. The future focus should therefore be on promulgating best practices and encapsulating these in the software. Such practices include adherence to validation principles, most notably the processing of independent sets, proper resolution-limited alignment, appropriate masking and map sharpening. We consider the Map Challenge to be a highly valuable exercise that should be repeated frequently or on an ongoing basis.


Asunto(s)
Microscopía por Crioelectrón/métodos , Algoritmos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Conformación Proteica , Programas Informáticos
5.
EMBO J ; 33(17): 1896-911, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25024436

RESUMEN

Living cells compartmentalize materials and enzymatic reactions to increase metabolic efficiency. While eukaryotes use membrane-bound organelles, bacteria and archaea rely primarily on protein-bound nanocompartments. Encapsulins constitute a class of nanocompartments widespread in bacteria and archaea whose functions have hitherto been unclear. Here, we characterize the encapsulin nanocompartment from Myxococcus xanthus, which consists of a shell protein (EncA, 32.5 kDa) and three internal proteins (EncB, 17 kDa; EncC, 13 kDa; EncD, 11 kDa). Using cryo-electron microscopy, we determined that EncA self-assembles into an icosahedral shell 32 nm in diameter (26 nm internal diameter), built from 180 subunits with the fold first observed in bacteriophage HK97 capsid. The internal proteins, of which EncB and EncC have ferritin-like domains, attach to its inner surface. Native nanocompartments have dense iron-rich cores. Functionally, they resemble ferritins, cage-like iron storage proteins, but with a massively greater capacity (~30,000 iron atoms versus ~3,000 in ferritin). Physiological data reveal that few nanocompartments are assembled during vegetative growth, but they increase fivefold upon starvation, protecting cells from oxidative stress through iron sequestration.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Sustancias Macromoleculares/metabolismo , Myxococcus xanthus/fisiología , Nanopartículas/metabolismo , Estrés Oxidativo , Microscopía por Crioelectrón , Modelos Moleculares , Myxococcus xanthus/ultraestructura , Multimerización de Proteína
6.
J Biol Chem ; 291(5): 2310-8, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26644467

RESUMEN

Parkinson disease and other progressive neurodegenerative conditions are characterized by the intracerebral presence of Lewy bodies, containing amyloid fibrils of α-synuclein. We used cryo-electron microscopy and scanning transmission electron microscopy (STEM) to study in vitro-assembled fibrils. These fibrils are highly polymorphic. Focusing on twisting fibrils with an inter-crossover spacing of 77 nm, our reconstructions showed them to consist of paired protofibrils. STEM mass per length data gave one subunit per 0.47 nm axial rise per protofibril, consistent with a superpleated ß-structure. The STEM images show two thread-like densities running along each of these fibrils, which we interpret as ladders of metal ions. These threads confirmed the two-protofibril architecture of the 77-nm twisting fibrils and allowed us to identify this morphotype in STEM micrographs. Some other, but not all, fibril morphotypes also exhibit dense threads, implying that they also present a putative metal binding site. We propose a molecular model for the protofibril and suggest that polymorphic variant fibrils have different numbers of protofibrils that are associated differently.


Asunto(s)
Amiloide/química , alfa-Sinucleína/química , Secuencia de Aminoácidos , Sitios de Unión , Microscopía por Crioelectrón , Humanos , Procesamiento de Imagen Asistido por Computador , Iones , Cuerpos de Lewy/metabolismo , Microscopía Electrónica de Transmisión de Rastreo , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido
7.
Mol Cell ; 35(2): 217-27, 2009 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-19647518

RESUMEN

To obtain structural information on the early stages of V(D)J recombination, we isolated a complex of the core RAG1 and RAG2 proteins with DNA containing a pair of cleaved recombination signal sequences (RSS). Stoichiometric and molecular mass analysis established that this signal-end complex (SEC) contains two protomers each of RAG1 and RAG2. Visualization of the SEC by negative-staining electron microscopy revealed an anchor-shaped particle with approximate two-fold symmetry. Consistent with a parallel arrangement of DNA and protein subunits, the N termini of RAG1 and RAG2 are positioned at opposing ends of the complex, and the DNA chains beyond the RSS nonamer emerge from the same face of the complex, near the RAG1 N termini. These first images of the V(D)J recombinase in its postcleavage state provide a framework for modeling RAG domains and their interactions with DNA.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Homeodominio/metabolismo , Recombinación Genética/fisiología , VDJ Recombinasas/fisiología , Proteínas Portadoras/análisis , Proteínas Portadoras/metabolismo , ADN/química , ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/ultraestructura , Proteínas de Homeodominio/química , Proteínas de Homeodominio/ultraestructura , Inmunohistoquímica , Proteínas de Unión a Maltosa , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Modelos Moleculares , Coloración Negativa , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/análisis , VDJ Recombinasas/química , VDJ Recombinasas/ultraestructura
8.
J Struct Biol ; 194(2): 156-63, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26873784

RESUMEN

Three-dimensional electron microscopy (3DEM) of ice-embedded samples allows the structural analysis of large biological macromolecules close to their native state. Different techniques have been developed during the last forty years to process cryo-electron microscopy (cryo-EM) data. Not surprisingly, success in analysis and interpretation is highly correlated with the continuous development of image processing packages. The field has matured to the point where further progress in data and methods sharing depends on an agreement between the packages on how to describe common image processing tasks. Such standardization will facilitate the use of software as well as seamless collaboration, allowing the sharing of rich information between different platforms. Our aim here is to describe the Electron Microscopy eXchange (EMX) initiative, launched at the 2012 Instruct Image Processing Center Developer Workshop, with the intention of developing a first set of standard conventions for the interchange of information for single-particle analysis (EMX version 1.0). These conventions cover the specification of the metadata for micrograph and particle images, including contrast transfer function (CTF) parameters and particle orientations. EMX v1.0 has already been implemented in the Bsoft, EMAN, Xmipp and Scipion image processing packages. It has been and will be used in the CTF and EMDataBank Validation Challenges respectively. It is also being used in EMPIAR, the Electron Microscopy Pilot Image Archive, which stores raw image data related to the 3DEM reconstructions in EMDB.


Asunto(s)
Microscopía por Crioelectrón/normas , Procesamiento de Imagen Asistido por Computador/normas , Programas Informáticos/normas , Algoritmos , Microscopía por Crioelectrón/instrumentación , Humanos , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Difusión de la Información
9.
J Biol Chem ; 288(35): 25276-25284, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-23857636

RESUMEN

The Serratia entomophila antifeeding prophage (Afp) is a bullet-shaped toxin-delivery apparatus similar to the R-pyocins of Pseudomonas aeruginosa. Morphologically it resembles the sheathed tail of bacteriophages such as T4, including a baseplate at one end. It also shares features with the type VI secretion systems. Cryo-electron micrographs of tilted Afp specimens (up to 60 degrees) were analyzed to determine the correct cyclic symmetry to overcome the limitation imposed by exclusively side views in nominally untilted specimens. An asymmetric reconstruction shows clear 6-fold cyclic symmetry contrary to a previous conclusion of 4-fold symmetry based on analysis of only the preferred side views (Sen, A., Rybakova, D., Hurst, M. R., and Mitra, A. K. (2010) J. Bacteriol. 192, 4522-4525). Electron tomography of negatively stained Afp revealed right-handed helical striations in many of the particles, establishing the correct hand. Higher quality micrographs of untilted specimens were processed to produce a reconstruction at 2.0-nm resolution with imposed 6-fold symmetry. The helical parameters of the sheath were determined to be 8.14 nm for the subunit rise along and 40.5° for the rotation angle around the helix. The sheath is similar to that of the T4 phage tail but with a different arrangement of the subdomain of the polymerizing sheath protein(s). The central tube is similar to the diameter and axial width of the Hcp1 hexamer of P. aeruginosa type VI secretion system. The tube extends through the baseplate into a needle resembling the "puncture device" of the T4 tail. The tube contains density that may be the toxin and/or a length-determining protein.


Asunto(s)
Bacteriófagos/ultraestructura , Serratia/virología , Sistemas de Secreción Bacterianos/fisiología , Bacteriófagos/metabolismo , Serratia/metabolismo
10.
J Virol ; 87(24): 13655-64, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24109217

RESUMEN

Retrovirus maturation involves sequential cleavages of the Gag polyprotein, initially arrayed in a spherical shell, leading to formation of capsids with polyhedral or conical morphology. Evidence suggests that capsids assemble de novo inside maturing virions from dissociated capsid (CA) protein, but the possibility persists of a displacive pathway in which the CA shell remains assembled but is remodeled. Inhibition of the final cleavage between CA and spacer peptide SP1/SP blocks the production of mature capsids. We investigated whether retention of SP might render CA assembly incompetent by testing the ability of Rous sarcoma virus (RSV) CA-SP to assemble in vitro into icosahedral capsids. Capsids were indeed assembled and were indistinguishable from those formed by CA alone, indicating that SP was disordered. We also used cryo-electron tomography to characterize HIV-1 particles produced in the presence of maturation inhibitor PF-46396 or with the cleavage-blocking CA5 mutation. Inhibitor-treated virions have a shell that resembles the CA layer of the immature Gag shell but is less complete. Some CA protein is generated but usually not enough for a mature core to assemble. We propose that inhibitors like PF-46396 bind to the Gag lattice where they deny the protease access to the CA-SP1 cleavage site and prevent the release of CA. CA5 particles, which exhibit no cleavage at the CA-SP1 site, have spheroidal shells with relatively thin walls. It appears that this lattice progresses displacively toward a mature-like state but produces neither conical cores nor infectious virions. These observations support the disassembly-reassembly pathway for core formation.


Asunto(s)
Cápside/química , Cápside/metabolismo , VIH-1/metabolismo , Virus del Sarcoma de Rous/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Productos del Gen gag/química , Productos del Gen gag/genética , Productos del Gen gag/metabolismo , VIH-1/química , VIH-1/genética , Humanos , Modelos Moleculares , Mutación , Virus del Sarcoma de Rous/química , Virus del Sarcoma de Rous/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
11.
ArXiv ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38076521

RESUMEN

In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop's motivation and history, the topics discussed, and consensus recommendations resulting from the workshop. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.

12.
IUCrJ ; 11(Pt 2): 140-151, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38358351

RESUMEN

In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for the deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop's motivation and history, the topics discussed, and the resulting consensus recommendations. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.


Asunto(s)
Curaduría de Datos , Microscopía por Crioelectrón/métodos
13.
J Struct Biol ; 184(2): 226-36, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23954653

RESUMEN

The resolution of density maps from single particle analysis is usually measured in terms of the highest spatial frequency to which consistent information has been obtained. This calculation represents an average over the entire reconstructed volume. In practice, however, substantial local variations in resolution may occur, either from intrinsic properties of the specimen or for technical reasons such as a non-isotropic distribution of viewing orientations. To address this issue, we propose the use of a space-frequency representation, the short-space Fourier transform, to assess the quality of a density map, voxel-by-voxel, i.e. by local resolution mapping. In this approach, the experimental volume is divided into small subvolumes and the resolution determined for each of them. It is illustrated in applications both to model data and to experimental density maps. Regions with lower-than-average resolution may be mobile components or ones with incomplete occupancy or result from multiple conformational states. To improve the interpretability of reconstructions, we propose an adaptive filtering approach that reconciles the resolution to which individual features are calculated with the results of the local resolution map.


Asunto(s)
Microscopía por Crioelectrón/métodos , Modelos Moleculares , Algoritmos , Proteínas de la Cápside/química , Proteínas de la Cápside/ultraestructura , Simulación por Computador , Análisis de Fourier , Herpesvirus Humano 1/ultraestructura , Imagenología Tridimensional , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Subunidades Ribosómicas Pequeñas Bacterianas/química , Subunidades Ribosómicas Pequeñas Bacterianas/ultraestructura , Sensibilidad y Especificidad , Thermus thermophilus
14.
J Struct Biol ; 184(1): 43-51, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23688956

RESUMEN

Clathrin coats, which stabilize membrane curvature during endocytosis and vesicular trafficking, form highly polymorphic fullerene lattices. We used cryo-electron tomography to visualize coated particles in isolates from bovine brain. The particles range from ∼66 to ∼134nm in diameter, and only 20% of them (all ⩾80nm) contain vesicles. The remaining 80% are clathrin "baskets", presumably artifactual assembly products. Polyhedral models were built for 54 distinct coat geometries. In true coated vesicles (CVs), most vesicles are offset to one side, leaving a crescent of interstitial space between the coat and the membrane for adaptor proteins and other components. The latter densities are fewer on the membrane-proximal side, which may represent the last part of the vesicle to bud off. A small number of densities - presumably cargo proteins - are associated with the interior surface of the vesicles. The clathrin coat, adaptor proteins, and vesicle membrane contribute almost all of the mass of a CV, with most cargoes accounting for only a few percent. The assembly of a CV therefore represents a massive biosynthetic effort to internalize a relatively diminutive payload. Such a high investment may be needed to overcome the resistance of membranes to high curvature.


Asunto(s)
Vesículas Cubiertas por Clatrina/metabolismo , Animales , Encéfalo/metabolismo , Bovinos , Tomografía con Microscopio Electrónico/métodos , Electrones
15.
Nat Methods ; 7(12): 985-7, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21076419

RESUMEN

We developed an X-ray microscope using partially coherent object illumination instead of previously used quasi-incoherent illumination. The design permitted the incorporation of a cryogenic tilt stage, enabling tomography of frozen-hydrated, intact adherent cells. We obtained three-dimensional reconstructions of mouse adenocarcinoma cells at ∼36-nm (Rayleigh) and ∼70-nm (Fourier ring correlation) resolution, which allowed us to visualize the double nuclear membrane, nuclear pores, nuclear membrane channels, mitochondrial cristae and lysosomal inclusions.


Asunto(s)
Adenocarcinoma/ultraestructura , Microscopía/métodos , Orgánulos/ultraestructura , Animales , Retículo Endoplásmico/ultraestructura , Luz , Lisosomas/ultraestructura , Ratones , Mitocondrias/ultraestructura , Modelos Estructurales , Membrana Nuclear/ultraestructura , Tomografía/métodos , Tomografía de Coherencia Óptica/métodos , Rayos X
16.
J Virol ; 86(21): 11616-24, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22896624

RESUMEN

Bacteriophage 6 is a double-stranded RNA (dsRNA) virus whose genome is packaged sequentially as three single-stranded RNA (ssRNA) segments into an icosahedral procapsid which serves as a compartment for genome replication and transcription. The procapsid shell consists of 60 copies each of P1(A) and P1(B), two nonequivalent conformers of the P1 protein. Hexamers of the packaging ATPase P4 are mounted over the 5-fold vertices, and monomers of the RNA-dependent RNA polymerase (P2) attach to the inner surface, near the 3-fold axes. A fourth protein, P7, is needed for packaging and also promotes assembly. We used cryo-electron microscopy to localize P7 by difference mapping of procapsids with different protein compositions. We found that P7 resides on the interior surface of the P1 shell and appears to be monomeric. Its binding sites are arranged around the 3-fold axes, straddling the interface between two P1(A) subunits. Thus, P7 may promote assembly by stabilizing an initiation complex. Only about 20% of the 60 P7 binding sites were occupied in our preparations. P7 density overlaps P2 density similarly mapped, implying mutual occlusion. The known structure of the 12 homolog fits snugly into the P7 density. Both termini-which have been implicated in RNA binding-are oriented toward the adjacent 5-fold vertex, the entry pathway of ssRNA segments. Thus, P7 may promote packaging either by interacting directly with incoming RNA or by modulating the structure of the translocation pore.


Asunto(s)
Bacteriófago phi 6/fisiología , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Virales/metabolismo , Ensamble de Virus , Replicación Viral , Bacteriófago phi 6/ultraestructura , Sitios de Unión , Microscopía por Crioelectrón , Sustancias Macromoleculares/metabolismo , Sustancias Macromoleculares/ultraestructura , Unión Proteica
17.
J Virol ; 86(6): 2919-29, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22258245

RESUMEN

Influenza virus enters host cells by endocytosis. The low pH of endosomes triggers conformational changes in hemagglutinin (HA) that mediate fusion of the viral and endosomal membranes. We have used cryo-electron tomography to visualize influenza A virus at pH 4.9, a condition known to induce fusogenicity. After 30 min, when all virions are in the postfusion state, dramatic changes in morphology are apparent: elongated particles are no longer observed, larger particles representing fused virions appear, the HA spikes become conspicuously disorganized, a layer of M1 matrix protein is no longer resolved on most virions, and the ribonucleoprotein complexes (RNPs) coagulate on the interior surface of the virion. To probe for intermediate states, preparations were imaged after 5 min at pH 4.9. These virions could be classified according to their glycoprotein arrays (organized or disorganized) and whether or not they have a resolved M1 layer. Employing subtomogram averaging, we found, in addition to the neutral-pH state of HA, two intermediate conformations that appear to reflect an outwards movement of the fusion peptide and rearrangement of the HA1 subunits, respectively. These changes are reversible. The tomograms also document pH-induced changes affecting the M1 layer that appear to render the envelope more pliable and hence conducive to fusion. However, it appears desirable for productive infection that fusion should proceed before the RNPs become coagulated with matrix protein, as eventually happens at low pH.


Asunto(s)
Virus de la Influenza A/química , Tomografía con Microscopio Electrónico , Concentración de Iones de Hidrógeno , Virus de la Influenza A/ultraestructura , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/ultraestructura
18.
J Struct Biol X ; 7: 100083, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36632443

RESUMEN

In our quest to solve biomolecular structures to higher resolutions in cryoEM, care must be taken to deal with all aspects of image formation in the electron microscope. One of these is the Ewald sphere/focus gradient that derives from the scattering geometry in the microscope and its implications for recovering high resolution and handedness information. While several methods to deal with it has been proposed and implemented, there are still questions as to the correct approach. At the high acceleration voltages used for cryoEM, the traditional projection approximation that ignores the Ewald sphere breaks down around 2-3 Å and with large particles. This is likely not crucial for most biologically interesting molecules, but is required to understand detail about catalytic events, molecular orbitals, orientation of bound water molecules, etc. Through simulation I show that integration along the Ewald spheres in frequency space during reconstruction, the "simple insertion method" is adequate to reach resolutions to the Nyquist frequency. Both theory and simulations indicate that the handedness information encoded in such phases is irretrievably lost in the formation of real space images. The conclusion is that correct reconstruction along the Ewald spheres avoids the limitations of the projection approximation.

19.
Viruses ; 15(12)2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38140645

RESUMEN

From the first isolation of the cystovirus bacteriophage Φ6 from Pseudomonas syringae 50 years ago, we have progressed to a better understanding of the structure and transformations of many parts of the virion. The three-layered virion, encapsulating the tripartite double-stranded RNA (dsRNA) genome, breaches the cell envelope upon infection, generates its own transcripts, and coopts the bacterial machinery to produce its proteins. The generation of a new virion starts with a procapsid with a contracted shape, followed by the packaging of single-stranded RNA segments with concurrent expansion of the capsid, and finally replication to reconstitute the dsRNA genome. The outer two layers are then added, and the fully formed virion released by cell lysis. Most of the procapsid structure, composed of the proteins P1, P2, P4, and P7 is now known, as well as its transformations to the mature, packaged nucleocapsid. The outer two layers are less well-studied. One additional study investigated the binding of the host protein YajQ to the infecting nucleocapsid, where it enhances the transcription of the large RNA segment that codes for the capsid proteins. Finally, I relate the structural aspects of bacteriophage Φ6 to those of other dsRNA viruses, noting the similarities and differences.


Asunto(s)
Bacteriófago phi 6 , Bacteriófagos , Animales , ARN Viral/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , Nucleocápside/metabolismo , Cápside/metabolismo , Proteínas de la Cápside/genética , ARN Bicatenario/metabolismo , Estadios del Ciclo de Vida
20.
Prog Retin Eye Res ; 95: 101147, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36402656

RESUMEN

Retinoschisin (RS1) is a secreted protein that is essential for maintaining integrity of the retina. Numerous mutations in RS1 cause X-linked retinoschisis (XLRS), a progressive degeneration of the retina that leads to vision loss in young males. A key manifestation of XLRS is the formation of cavities (cysts) in the retina and separation of the layers (schisis), disrupting synaptic transmission. There are currently no approved treatments for patients with XLRS. Strategies using adeno-associated viral (AAV) vectors to deliver functional copies of RS1 as a form of gene augmentation therapy, are under clinical evaluation. To improve therapeutic strategies for treating XLRS, it is critical to better understand the secretion of RS1 and its molecular function. Immunofluorescence and immunoelectron microscopy show that RS1 is located on the surfaces of the photoreceptor inner segments and bipolar cells. Sequence homology indicates a discoidin domain fold, similar to many other proteins with demonstrated adhesion functions. Recent structural studies revealed the tertiary structure of RS1 as two back-to-back octameric rings, each cross-linked by disulfides. The observation of higher order structures in vitro suggests the formation of an adhesive matrix spanning the distance between cells (∼100 nm). Several studies indicated that RS1 readily binds to other proteins such as the sodium-potassium ATPase (NaK-ATPase) and extracellular matrix proteins. Alternatively, RS1 may influence fluid regulation via interaction with membrane proteins such as the NaK-ATPase, largely inferred from the use of carbonic anhydrase inhibitors to shrink the typical intra-retinal cysts in XLRS. We discuss these models in light of RS1 structure and address the difficulty in understanding the function of RS1.


Asunto(s)
Retina , Retinosquisis , Masculino , Humanos , Estructura Molecular , Retina/metabolismo , Retinosquisis/genética , Retinosquisis/metabolismo , Mutación , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas del Ojo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA