Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Rev Endocr Metab Disord ; 20(4): 407-414, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31705258

RESUMEN

Despite the development of new drugs and therapeutic strategies, mortality and morbidity related to heart failure (HF) remains high. It is also the leading cause of global mortality. Several concepts have been proposed to explore the underlying pathogenesis of HF, but there is still a strong need for more specific and complementary therapeutic options. In recent years, accumulating evidence has demonstrated that changes in the composition of gut microbiota, referred to as dysbiosis, might play a pivotal role in the development of several diseases, including HF. HF-associated decreased cardiac output, resulting in bowell wall oedema and intestine ischaemia, can alter gut structure, peamibility and function. These changes would favour bacterial translocation, exacerbating HF pathogenesis at least partly through activation of systemic inflammation. Although our knowledge of the precise molecular mechanisms by which gut dysbiosis influance HF is still limited, a growing body of evidence has recently demonstrated the impact of a series of gut microbiome-derived metabolites, such as trimetylamine N-oxide, short-chain fatty acids or secondary bile acids, which have been shown to play critical roles in cardiac health and disease. This review will summarize the role of gut microbiota and its metabolites in the pathogenesis of HF. Current and future preventive and therapeutic strategies to prevent HF by an adequate modulation of the microbiome and its derived metabolites are also discussed.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Insuficiencia Cardíaca/microbiología , Animales , Disbiosis/microbiología , Humanos
2.
Circulation ; 131(4): 390-400; discussion 400, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25369805

RESUMEN

BACKGROUND: Cardiac hypertrophy is an early hallmark during the clinical course of heart failure and is regulated by various signaling pathways. However, the molecular mechanisms that negatively regulate these signal transduction pathways remain poorly understood. METHODS AND RESULTS: Here, we characterized Carabin, a protein expressed in cardiomyocytes that was downregulated in cardiac hypertrophy and human heart failure. Four weeks after transverse aortic constriction, Carabin-deficient (Carabin(-/-)) mice developed exaggerated cardiac hypertrophy and displayed a strong decrease in fractional shortening (14.6±1.6% versus 27.6±1.4% in wild type plus transverse aortic constriction mice; P<0.0001). Conversely, compensation of Carabin loss through a cardiotropic adeno-associated viral vector encoding Carabin prevented transverse aortic constriction-induced cardiac hypertrophy with preserved fractional shortening (39.9±1.2% versus 25.9±2.6% in control plus transverse aortic constriction mice; P<0.0001). Carabin also conferred protection against adrenergic receptor-induced hypertrophy in isolated cardiomyocytes. Mechanistically, Carabin carries out a tripartite suppressive function. Indeed, Carabin, through its calcineurin-interacting site and Ras/Rab GTPase-activating protein domain, functions as an endogenous inhibitor of calcineurin and Ras/extracellular signal-regulated kinase prohypertrophic signaling. Moreover, Carabin reduced Ca(2+)/calmodulin-dependent protein kinase II activation and prevented nuclear export of histone deacetylase 4 after adrenergic stimulation or myocardial pressure overload. Finally, we showed that Carabin Ras-GTPase-activating protein domain and calcineurin-interacting domain were both involved in the antihypertrophic action of Carabin. CONCLUSIONS: Our study identifies Carabin as a negative regulator of key prohypertrophic signaling molecules, calcineurin, Ras, and Ca(2+)/calmodulin-dependent protein kinase II and implicates Carabin in the development of cardiac hypertrophy and failure.


Asunto(s)
Calcineurina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/prevención & control , Proteínas Activadoras de GTPasa/biosíntesis , Genes ras/fisiología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Ratas , Transducción de Señal/fisiología
3.
Am J Physiol Gastrointest Liver Physiol ; 310(11): G1091-101, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27033119

RESUMEN

Periodontitis and type 2 diabetes are connected pandemic diseases, and both are risk factors for cardiovascular complications. Nevertheless, the molecular factors relating these two chronic pathologies are poorly understood. We have shown that, in response to a long-term fat-enriched diet, mice present particular gut microbiota profiles related to three metabolic phenotypes: diabetic-resistant (DR), intermediate (Inter), and diabetic-sensitive (DS). Moreover, many studies suggest that a dysbiosis of periodontal microbiota could be associated with the incidence of metabolic and cardiac diseases. We investigated whether periodontitis together with the periodontal microbiota may also be associated with these different cardiometabolic phenotypes. We report that the severity of glucose intolerance is related to the severity of periodontitis and cardiac disorders. In detail, alveolar bone loss was more accentuated in DS than Inter, DR, and normal chow-fed mice. Molecular markers of periodontal inflammation, such as TNF-α and plasminogen activator inhibitor-1 mRNA levels, correlated positively with both alveolar bone loss and glycemic index. Furthermore, the periodontal microbiota of DR mice was dominated by the Streptococcaceae family of the phylum Firmicutes, whereas the periodontal microbiota of DS mice was characterized by increased Porphyromonadaceae and Prevotellaceae families. Moreover, in DS mice the periodontal microbiota was indicated by an abundance of the genera Prevotella and Tannerella, which are major periodontal pathogens. PICRUSt analysis of the periodontal microbiome highlighted that prenyltransferase pathways follow the cardiometabolic adaptation to a high-fat diet. Finally, DS mice displayed a worse cardiac phenotype, percentage of fractional shortening, heart rhythm, and left ventricle weight-to-tibia length ratio than Inter and DR mice. Together, our data show that periodontitis combined with particular periodontal microbiota and microbiome is associated with metabolic adaptation to a high-fat diet related to the severity of cardiometabolic alteration.


Asunto(s)
Adaptación Fisiológica , Enfermedades Cardiovasculares/metabolismo , Dieta Alta en Grasa , Intolerancia a la Glucosa , Microbiota , Periodontitis/microbiología , Función Ventricular , Animales , Enfermedades Cardiovasculares/complicaciones , Enfermedades Cardiovasculares/microbiología , Dimetilaliltranstransferasa/metabolismo , Disbiosis/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Periodontitis/complicaciones , Inhibidor 1 de Activador Plasminogénico/metabolismo , Prevotella/aislamiento & purificación , Streptococcaceae/aislamiento & purificación , Factor de Necrosis Tumoral alfa/metabolismo
4.
Stem Cells ; 33(4): 1277-91, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25523907

RESUMEN

Obesity-associated inflammation contributes to the development of metabolic diseases. Although brite adipocytes have been shown to ameliorate metabolic parameters in rodents, their origin and differentiation remain to be characterized in humans. Native CD45-/CD34+/CD31- cells have been previously described as human adipocyte progenitors. Using two additional cell surface markers, MSCA1 (tissue nonspecific alkaline phosphatase) and CD271 (nerve growth factor receptor), we are able to partition the CD45-/CD34+/CD31- cell population into three subsets. We establish serum-free culture conditions without cell expansion to promote either white/brite adipogenesis using rosiglitazone, or bone morphogenetic protein 7 (BMP7), or specifically brite adipogenesis using 3-isobuthyl-1-methylxanthine. We demonstrate that adipogenesis leads to an increase of MSCA1 activity, expression of white/brite adipocyte-related genes, and mitochondriogenesis. Using pharmacological inhibition and gene silencing approaches, we show that MSCA1 activity is required for triglyceride accumulation and for the expression of white/brite-related genes in human cells. Moreover, native immunoselected MSCA1+ cells exhibit brite precursor characteristics and the highest adipogenic potential of the three progenitor subsets. Finally, we provided evidence that MSCA1+ white/brite precursors accumulate with obesity in subcutaneous adipose tissue (sAT), and that local BMP7 and inflammation regulate brite adipogenesis by modulating MSCA1 in human sAT. The accumulation of MSCA1+ white/brite precursors in sAT with obesity may reveal a blockade of their differentiation by immune cells, suggesting that local inflammation contributes to metabolic disorders through impairment of white/brite adipogenesis. Stem Cells 2015;33:1277-1291.


Asunto(s)
Adipocitos Blancos/inmunología , Adipocitos Blancos/metabolismo , Adipogénesis/fisiología , Antígenos de Superficie/biosíntesis , Inmunidad Celular/fisiología , Adulto , Anciano , Células Cultivadas , Femenino , Humanos , Persona de Mediana Edad
5.
J Mol Cell Cardiol ; 81: 54-61, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25595735

RESUMEN

Excessive oxidative stress in the heart results in contractile dysfunction. While antioxidant therapies have been a disappointment clinically, exercise has shown beneficial results, in part by reducing oxidative stress. We have previously shown that neuronal nitric oxide synthase (nNOS) is essential for cardioprotective adaptations caused by exercise. We hypothesize that part of the cardioprotective role of nNOS is via the augmentation of the antioxidant defense with exercise by positively shifting the nitroso-redox balance. Our results show that nNOS is indispensable for the augmented anti-oxidant defense with exercise. Furthermore, exercise training of nNOS knockout mice resulted in a negative shift in the nitroso-redox balance resulting in contractile dysfunction. Remarkably, overexpressing nNOS (conditional cardiac-specific nNOS overexpression) was able to mimic exercise by increasing VO2max. This study demonstrates that exercise results in a positive shift in the nitroso-redox balance that is nNOS-dependent. Thus, targeting nNOS signaling may mimic the beneficial effects of exercise by combating oxidative stress and may be a viable treatment strategy for heart disease.


Asunto(s)
Contracción Miocárdica/fisiología , Miocardio/metabolismo , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico/biosíntesis , Condicionamiento Físico Animal , Adaptación Fisiológica , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Miocardio/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Óxido Nítrico Sintasa de Tipo I/deficiencia , Oxidación-Reducción , Estrés Oxidativo , Cultivo Primario de Células , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
6.
Basic Res Cardiol ; 110(5): 506, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26173391

RESUMEN

Nitric oxide (NO) modulates calcium transients and contraction of cardiomyocytes. However, it is largely unknown whether NO contributes also to alterations in the contractile function of cardiomyocytes during aging. Therefore, we analyzed the putative role of nitric oxide synthases and NO for the age-related alterations of cardiomyocyte contraction. We used C57BL/6 mice, nitric oxide synthase 1 (NOS1)-deficient mice (NOS1(-/-)) and mice with cardiomyocyte-specific NOS1-overexpression to analyze contractions, calcium transients (Indo-1 fluorescence), acto-myosin ATPase activity (malachite green assay), NADPH oxidase activity (lucigenin chemiluminescence) of isolated ventricular myocytes and cardiac gene expression (Western blots, qPCR). In C57BL/6 mice, cardiac expression of NOS1 was upregulated by aging. Since we found a negative regulation of NOS1 expression by cAMP in isolated cardiomyocytes, we suggest that reduced efficacy of ß-adrenergic signaling that is evident in aged hearts promotes upregulation of NOS1. Shortening and relengthening of cardiomyocytes from aged C57BL/6 mice were decelerated, but were normalized by pharmacological inhibition of NOS1/NO. Cardiomyocytes from NOS1(-/-) mice displayed no age-related changes in contraction, calcium transients or acto-myosin ATPase activity. Aging increased cardiac expression of NADPH oxidase subunits NOX2 and NOX4 in C57BL/6 mice, but not in NOS1(-/-) mice. Similarly, cardiac expression of NOX2 and NOX4 was upregulated in a murine model with cardiomyocyte-specific overexpression of NOS1. We conclude that age-dependently upregulated NOS1, putatively via reduced efficacy of ß-adrenergic signaling, induces NADPH oxidases. By increasing nitrosative and oxidative stress, both enzyme systems act synergistically to decelerate contraction of aged cardiomyocytes.


Asunto(s)
Envejecimiento/fisiología , Contracción Miocárdica/fisiología , Miocitos Cardíacos/metabolismo , NADPH Oxidasas/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Animales , Western Blotting , Regulación de la Expresión Génica/fisiología , Ventrículos Cardíacos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
J Mol Cell Cardiol ; 74: 162-72, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24839910

RESUMEN

Loss of T-tubules (TT), sarcolemmal invaginations of cardiomyocytes (CMs), was recently identified as a general heart failure (HF) hallmark. However, whether TT per se or the overall sarcolemma is altered during HF process is still unknown. In this study, we directly examined sarcolemmal surface topography and physical properties using Atomic Force Microscopy (AFM) in living CMs from healthy and failing mice hearts. We confirmed the presence of highly organized crests and hollows along myofilaments in isolated healthy CMs. Sarcolemma topography was tightly correlated with elasticity, with crests stiffer than hollows and related to the presence of few packed subsarcolemmal mitochondria (SSM) as evidenced by electron microscopy. Three days after myocardial infarction (MI), CMs already exhibit an overall sarcolemma disorganization with general loss of crests topography thus becoming smooth and correlating with a decreased elasticity while interfibrillar mitochondria (IFM), myofilaments alignment and TT network were unaltered. End-stage post-ischemic condition (15days post-MI) exacerbates overall sarcolemma disorganization with, in addition to general loss of crest/hollow periodicity, a significant increase of cell surface stiffness. Strikingly, electron microscopy revealed the total depletion of SSM while some IFM heaps could be visualized beneath the membrane. Accordingly, mitochondrial Ca(2+) studies showed a heterogeneous pattern between SSM and IFM in healthy CMs which disappeared in HF. In vitro, formamide-induced sarcolemmal stress on healthy CMs phenocopied post-ischemic kinetics abnormalities and revealed initial SSM death and crest/hollow disorganization followed by IFM later disarray which moved toward the cell surface and structured heaps correlating with TT loss. This study demonstrates that the loss of crest/hollow organization of CM surface in HF occurs early and precedes disruption of the TT network. It also highlights a general stiffness increased of the CM surface most likely related to atypical IFM heaps while SSM died during HF process. Overall, these results indicate that initial sarcolemmal stress leading to SSM death could underlie subsequent TT disarray and HF setting.


Asunto(s)
Insuficiencia Cardíaca/patología , Mitocondrias Cardíacas/ultraestructura , Miocitos Cardíacos/ultraestructura , Miofibrillas/ultraestructura , Sarcolema/ultraestructura , Animales , Elasticidad , Ratones , Microscopía de Fuerza Atómica , Microscopía Electrónica
8.
Circ Res ; 110(5): 688-700, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22302788

RESUMEN

RATIONALE: Cardiac tissue cohesion relying on highly ordered cardiomyocytes (CM) interactions is critical because most cardiomyopathies are associated with tissue remodeling and architecture alterations. OBJECTIVE: Eph/ephrin system constitutes a ubiquitous system coordinating cellular communications which recently emerged as a major regulator in adult organs. We examined if eph/ephrin could participate in cardiac tissue cyto-organization. METHODS AND RESULTS: We reported the expression of cardiac ephrin-B1 in both endothelial cells and for the first time in CMs where ephrin-B1 localized specifically at the lateral membrane. Ephrin-B1 knock-out (KO) mice progressively developed cardiac tissue disorganization with loss of adult CM rod-shape and sarcomeric and intercalated disk structural disorganization confirmed in CM-specific ephrin-B1 KO mice. CMs lateral membrane exhibited abnormal structure by electron microscopy and notably increased stiffness by atomic force microscopy. In wild-type CMs, ephrin-B1 interacted with claudin-5/ZO-1 complex at the lateral membrane, whereas the complex disappeared in KO/CM-specific ephrin-B1 KO mice. Ephrin-B1 deficiency resulted in decreased mRNA expression of CM basement membrane components and disorganized fibrillar collagen matrix, independently of classical integrin/dystroglycan system. KO/CM-specific ephrin-B1 KO mice exhibited increased left ventricle diameter and delayed atrioventricular conduction. Under pressure overload stress, KO mice were prone to death and exhibited striking tissue disorganization. Finally, failing CMs displayed downregulated ephrin-B1/claudin-5 gene expression linearly related to the ejection fraction. CONCLUSIONS: Ephrin-B1 is necessary for cardiac tissue architecture cohesion by stabilizing the adult CM morphology through regulation of its lateral membrane. Because decreased ephrin-B1 is associated with molecular/functional cardiac defects, it could represent a new actor in the transition toward heart failure.


Asunto(s)
Comunicación Celular/fisiología , Efrina-B1/fisiología , Proteínas de la Membrana/fisiología , Miocitos Cardíacos/fisiología , Animales , Membrana Celular/fisiología , Membrana Celular/ultraestructura , Células Cultivadas , Colágeno/fisiología , Colágeno/ultraestructura , Endotelio Vascular/citología , Endotelio Vascular/fisiología , Endotelio Vascular/ultraestructura , Efrina-B1/deficiencia , Efrina-B1/genética , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Miocitos Cardíacos/citología , Miocitos Cardíacos/ultraestructura , Sarcómeros/diagnóstico por imagen , Sarcómeros/fisiología , Ultrasonografía
9.
Circulation ; 125(8): 1014-26, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22265908

RESUMEN

BACKGROUND: C/EBP homologous protein-10 (CHOP-10) is a novel developmentally regulated nuclear protein that emerges as a critical transcriptional integrator among pathways regulating differentiation, proliferation, and survival. In the present study, we analyzed the role of CHOP-10 in postnatal neovascularization. METHODS AND RESULTS: Ischemia was induced by right femoral artery ligation in wild-type and CHOP-10(-/-) mice. In capillary structure of skeletal muscle, CHOP-10 mRNA and protein levels were upregulated by ischemia and diabetes mellitus. Angiographic score, capillary density, and foot perfusion were increased in CHOP-10(-/-) mice compared with wild-type mice. This effect was associated with a reduction in apoptosis and an upregulation of endothelial nitric oxide synthase (eNOS) levels in ischemic legs of CHOP-10(-/-) mice compared with wild-type mice. In agreement with these results, eNOS mRNA and protein levels were significantly upregulated in CHOP-10 short interfering RNA-transfected human endothelial cells, whereas overexpression of CHOP-10 inhibited basal transcriptional activation of the eNOS promoter. Using a chromatin immunoprecipitation assay, we also showed that CHOP-10 was bound to the eNOS promoter. Interestingly, enhanced postischemic neovascularization in CHOP-10(-/-) mice was fully blunted in CHOP-10/eNOS double-knockout animals. Finally, we showed that induction of diabetes mellitus is associated with a marked upregulation of CHOP-10 that substantially inhibited postischemic neovascularization. CONCLUSIONS: This study identifies CHOP-10 as an important transcription factor modulating vessel formation and maturation.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Neovascularización Patológica/enzimología , Óxido Nítrico Sintasa de Tipo III/genética , Factor de Transcripción CHOP/genética , Animales , Animales Recién Nacidos , Células Cultivadas , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/genética , Arteria Femoral/enzimología , Arteria Femoral/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica/genética , Óxido Nítrico Sintasa de Tipo III/biosíntesis , Unión Proteica/genética , Factor de Transcripción CHOP/biosíntesis , Factor de Transcripción CHOP/deficiencia , Activación Transcripcional/genética , Regulación hacia Arriba/genética
10.
Gastroenterology ; 143(1): 166-76.e6, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22465620

RESUMEN

BACKGROUND & AIMS: Circulating membrane-shed microparticles (MPs) participate in regulation of vascular tone. We investigated the cellular origins of MPs in plasma from patients with cirrhosis and assessed the contribution of MPs to arterial vasodilation, a mechanism that contributes to portal hypertension. METHODS: We analyzed MPs from blood samples of 91 patients with cirrhosis and 30 healthy individuals (controls) using flow cytometry; their effects on the vascular response to vasoconstrictors were examined in vitro and in vivo. RESULTS: Circulating levels of leuko-endothelial (CD31(+)/41(-)), pan-leukocyte (CD11a(+)), lymphocyte (CD4(+)), and erythrocyte (CD235a(+)) MPs were higher in patients with cirrhosis than in controls. Plasma of patients with cirrhosis contained hepatocyte-derived MPs (cytokeratin-18(+)), whereas plasma from controls did not. The severity of cirrhosis and systemic inflammation were major determinants of the levels of leuko-endothelial and hepatocyte MPs. MPs from patients with advanced cirrhosis significantly impaired contraction of vessels in response to phenylephrine, whereas MPs from healthy controls or from patients of Child-Pugh class A did not. This effect depended on cyclooxygenase type 1 and required phosphatidylserine on the surface of MPs. Intravenous injection of MPs from patients with cirrhosis into BALB/C mice decreased mean arterial blood pressure. CONCLUSIONS: Cirrhosis is associated with increases in circulating subpopulations of MPs, likely resulting from systemic inflammation and liver cell damage. The overall pool of circulating MPs from patients with advanced cirrhosis impairs vasoconstrictor responses and decreases blood pressure, contributing to the arterial vasodilation associated with portal hypertension.


Asunto(s)
Micropartículas Derivadas de Células , Dilatación Patológica/fisiopatología , Hipertensión Portal/fisiopatología , Cirrosis Hepática/fisiopatología , Adulto , Femenino , Citometría de Flujo , Humanos , Cirrosis Hepática/sangre , Masculino , Persona de Mediana Edad , Vasoconstrictores/farmacología , Vasodilatación/efectos de los fármacos
11.
Nat Commun ; 14(1): 5329, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658064

RESUMEN

Dietary lipids can affect metabolic health through gut microbiota-mediated mechanisms, but the influence of lipid-microbiota interaction on liver steatosis is largely unknown. We investigate the impact of dietary lipids on human gut microbiota composition and the effects of microbiota-lipid interactions on steatosis in male mice. In humans, low intake of saturated fatty acids (SFA) is associated with increased microbial diversity independent of fiber intake. In mice, poorly absorbed dietary long-chain SFA, particularly stearic acid, induce a shift in bile acid profile and improved metabolism and steatosis. These benefits are dependent on the gut microbiota, as they are transmitted by microbial transfer. Diets enriched in polyunsaturated fatty acids are protective against steatosis but have minor influence on the microbiota. In summary, we find that diets enriched in poorly absorbed long-chain SFA modulate gut microbiota profiles independent of fiber intake, and this interaction is relevant to improve metabolism and decrease liver steatosis.


Asunto(s)
Hígado Graso , Microbioma Gastrointestinal , Microbiota , Humanos , Masculino , Animales , Ratones , Ácidos Grasos , Ácidos y Sales Biliares , Grasas de la Dieta
12.
Circ Res ; 105(8): 784-92, 2009 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-19745166

RESUMEN

RATIONALE: Multiple cyclic nucleotide phosphodiesterases (PDEs) degrade cAMP in cardiomyocytes but the role of PDEs in controlling cAMP signaling during pathological cardiac hypertrophy is poorly defined. OBJECTIVE: Evaluate the beta-adrenergic regulation of cardiac contractility and characterize the changes in cardiomyocyte cAMP signals and cAMP-PDE expression and activity following cardiac hypertrophy. METHODS AND RESULTS: Cardiac hypertrophy was induced in rats by thoracic aortic banding over a time period of 5 weeks and was confirmed by anatomic measurements and echocardiography. Ex vivo myocardial function was evaluated in Langendorff-perfused hearts. Engineered cyclic nucleotide-gated (CNG) channels were expressed in single cardiomyocytes to monitor subsarcolemmal cAMP using whole-cell patch-clamp recordings of the associated CNG current (I(CNG)). PDE variant activity and protein level were determined in purified cardiomyocytes. Aortic stenosis rats exhibited a 67% increase in heart weight compared to sham-operated animals. The inotropic response to maximal beta-adrenergic stimulation was reduced by approximately 54% in isolated hypertrophied hearts, along with a approximately 32% decrease in subsarcolemmal cAMP levels in hypertrophied myocytes. Total cAMP hydrolytic activity as well as PDE3 and PDE4 activities were reduced in hypertrophied myocytes, because of a reduction of PDE3A, PDE4A, and PDE4B, whereas PDE4D was unchanged. Regulation of beta-adrenergic cAMP signals by PDEs was blunted in hypertrophied myocytes, as demonstrated by the diminished effects of IBMX (100 micromol/L) and of both the PDE3 inhibitor cilostamide (1 micromol/L) and the PDE4 inhibitor Ro 201724 (10 micromol/L). CONCLUSIONS: Beta-adrenergic desensitization is accompanied by a reduction in cAMP-PDE and an altered modulation of beta-adrenergic cAMP signals in cardiac hypertrophy.


Asunto(s)
Cardiomegalia/enzimología , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Regulación Enzimológica de la Expresión Génica , Miocitos Cardíacos/enzimología , Sistemas de Mensajero Secundario , 1-Metil-3-Isobutilxantina/farmacología , 4-(3-Butoxi-4-metoxibencil)-2-imidazolidinona/farmacología , Animales , Estenosis de la Válvula Aórtica/enzimología , Estenosis de la Válvula Aórtica/patología , Cardiomegalia/patología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Masculino , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/patología , Tamaño de los Órganos , Inhibidores de Fosfodiesterasa 4 , Inhibidores de Fosfodiesterasa/farmacología , Quinolonas/farmacología , Ratas , Ratas Wistar
13.
Acta Diabetol ; 58(7): 881-897, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33723651

RESUMEN

AIMS: Liraglutide controls type 2 diabetes (T2D) and inflammation. Gut microbiota regulates the immune system and causes at least in part type 2 diabetes. We here evaluated whether liraglutide regulates T2D through both gut microbiota and immunity in dysmetabolic mice. METHODS: Diet-induced dysmetabolic mice were treated for 14 days with intraperitoneal injection of liraglutide (100 µg/kg) or with vehicle or Exendin 4 (10 µg/kg) as controls. Various metabolic parameters, the intestinal immune cells were characterized and the 16SrDNA gene sequenced from the gut. The causal role of gut microbiota was shown using large spectrum antibiotics and by colonization of germ-free mice with the gut microbiota from treated mice. RESULTS: Besides, the expected metabolic impacts liraglutide treatment induced a specific gut microbiota specific signature when compared to vehicle or Ex4-treated mice. However, liraglutide only increased glucose-induced insulin secretion, reduced the frequency of Th1 lymphocytes, and increased that of TReg in the intestine. These effects were abolished by a concomitant antibiotic treatment. Colonization of germ-free mice with gut microbiota from liraglutide-treated diabetic mice improved glucose-induced insulin secretion and regulated the intestinal immune system differently from what observed in germ-free mice colonized with microbiota from non-treated diabetic mice. CONCLUSIONS: Altogether, our result demonstrated first the influence of liraglutide on gut microbiota and the intestinal immune system which could at least in part control glucose-induced insulin secretion.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Sistema Inmunológico/efectos de los fármacos , Secreción de Insulina/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Liraglutida/farmacología , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/microbiología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL
14.
Sci Transl Med ; 13(591)2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33910978

RESUMEN

Insulin resistance is a key event in type 2 diabetes onset and a major comorbidity of obesity. It results from a combination of fat excess-triggered defects, including lipotoxicity and metaflammation, but the causal mechanisms remain difficult to identify. Here, we report that hyperactivation of the tyrosine phosphatase SHP2 found in Noonan syndrome (NS) led to an unsuspected insulin resistance profile uncoupled from altered lipid management (for example, obesity or ectopic lipid deposits) in both patients and mice. Functional exploration of an NS mouse model revealed this insulin resistance phenotype correlated with constitutive inflammation of tissues involved in the regulation of glucose metabolism. Bone marrow transplantation and macrophage depletion improved glucose homeostasis and decreased metaflammation in the mice, highlighting a key role of macrophages. In-depth analysis of bone marrow-derived macrophages in vitro and liver macrophages showed that hyperactive SHP2 promoted a proinflammatory phenotype, modified resident macrophage homeostasis, and triggered monocyte infiltration. Consistent with a role of SHP2 in promoting inflammation-driven insulin resistance, pharmaceutical SHP2 inhibition in obese diabetic mice improved insulin sensitivity even better than conventional antidiabetic molecules by specifically reducing metaflammation and alleviating macrophage activation. Together, these results reveal that SHP2 hyperactivation leads to inflammation-triggered metabolic impairments and highlight the therapeutical potential of SHP2 inhibition to ameliorate insulin resistance.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Tejido Adiposo , Animales , Humanos , Inflamación , Macrófagos , Ratones , Ratones Noqueados
15.
Nat Commun ; 12(1): 1483, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674611

RESUMEN

Acute myocardial infarction is a common condition responsible for heart failure and sudden death. Here, we show that following acute myocardial infarction in mice, CD8+ T lymphocytes are recruited and activated in the ischemic heart tissue and release Granzyme B, leading to cardiomyocyte apoptosis, adverse ventricular remodeling and deterioration of myocardial function. Depletion of CD8+ T lymphocytes decreases apoptosis within the ischemic myocardium, hampers inflammatory response, limits myocardial injury and improves heart function. These effects are recapitulated in mice with Granzyme B-deficient CD8+ T cells. The protective effect of CD8 depletion on heart function is confirmed by using a model of ischemia/reperfusion in pigs. Finally, we reveal that elevated circulating levels of GRANZYME B in patients with acute myocardial infarction predict increased risk of death at 1-year follow-up. Our work unravels a deleterious role of CD8+ T lymphocytes following acute ischemia, and suggests potential therapeutic strategies targeting pathogenic CD8+ T lymphocytes in the setting of acute myocardial infarction.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Granzimas/genética , Granzimas/metabolismo , Corazón/fisiopatología , Remodelación Ventricular/fisiología , Animales , Apoptosis , Linfocitos T CD8-positivos/patología , Modelos Animales de Enfermedad , Femenino , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Proteínas de Homeodominio/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/metabolismo , Miocardio/patología , Porcinos , Transcriptoma
16.
Circ Res ; 102(8): 959-65, 2008 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-18323524

RESUMEN

Cardiac hypertrophy is promoted by adrenergic overactivation and can progress to heart failure, a leading cause of mortality worldwide. Although cAMP is among the most well-known signaling molecules produced by beta-adrenergic receptor stimulation, its mechanism of action in cardiac hypertrophy is not fully understood. The identification of Epac (exchange protein directly activated by cAMP) proteins as novel sensors for cAMP has broken the dogma surrounding cAMP and protein kinase A. However, their role and regulation in the mature heart remain to be defined. Here, we show that cardiac hypertrophy induced by thoracic aortic constriction increases Epac1 expression in rat myocardium. Adult ventricular myocytes isolated from banded animals display an exaggerated cellular growth in response to Epac activation. At the molecular level, Epac1 hypertrophic effects are independent of its classic effector, Rap1, but rather involve the small GTPase Ras, the phosphatase calcineurin, and Ca(2+)/calmodulin-dependent protein kinase II. Importantly, we find that in response to beta-adrenergic receptor stimulation, Epac1 activates Ras and induces adult cardiomyocyte hypertrophy in a cAMP-dependent but protein kinase A-independent manner. Knockdown of Epac1 strongly reduces beta-adrenergic receptor-induced hypertrophic program. Finally, we report for the first time that Epac1 is mainly expressed in human heart as compared with Epac2 isoform and is increased in heart failure. Taken together, our data demonstrate that the guanine nucleotide exchange factor Epac1 contributes to the hypertrophic effect of beta-adrenergic receptor in a protein kinase A-independent fashion and may, therefore, represent a novel therapeutic target for the treatment of cardiac disorders.


Asunto(s)
Cardiomegalia/etiología , Factores de Intercambio de Guanina Nucleótido/análisis , Factores de Intercambio de Guanina Nucleótido/fisiología , Hipertrofia/etiología , Miocitos Cardíacos/patología , Receptores Adrenérgicos beta/fisiología , Animales , Calcineurina , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de AMP Cíclico , Humanos , Ratas , Ratas Wistar , Proteínas ras
17.
Clin Transl Sci ; 13(3): 529-538, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31981449

RESUMEN

The long duration of animal models represents a clear limitation to quickly evaluate the efficacy of drugs targeting nonalcoholic steatohepatitis (NASH). We, therefore, developed a rapid mouse model of liver inflammation (i.e., the mouse fed a high-fat/high-cholesterol diet, where cyclodextrin is co-administered to favor hepatic cholesterol loading, liver inflammation, and NASH within 3 weeks), and evaluated the effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist elafibranor (ELA). C57BL6/J mice were fed a 60% high-fat, 1.25% cholesterol, and 0.5% cholic acid diet with 2% cyclodextrin in drinking water (HFCC/CDX diet) for 3 weeks. After 1 week of the diet, mice were treated orally with vehicle or ELA 20 mg/kg q.d. for 2 weeks. Compared with vehicle, ELA markedly reduced liver lipids and nonalcoholic fatty liver disease activity scoring, through steatosis, inflammation, and fibrosis (all P < 0.01 vs. vehicle). Flow cytometry analysis showed that ELA significantly improved the HFCC/CDX diet-induced liver inflammation by preventing the increase in total number of immune cells (CD45+), Kupffer cells, dendritic cells, and monocytes population, as well as the reduction in natural killer and natural killer T cells, and by blocking conversion of T cells in regulatory T cells. ELA did not alter pyroptosis (Gasdermin D), but significantly reduced necroptosis (cleaved RIP3) and apoptosis (cleaved caspase 3) in the liver. In conclusion, ELA showed strong benefits on NASH, including improvement in hepatic inflammation, necroptosis, and apoptosis in the 3-week NASH mouse. This preclinical model will be useful to rapidly detect the effects of novel drugs targeting NASH.


Asunto(s)
Chalconas/farmacología , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Propionatos/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Chalconas/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Humanos , Hígado/inmunología , Hígado/patología , Masculino , Ratones , Necroptosis/efectos de los fármacos , Necroptosis/inmunología , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/patología , Propionatos/uso terapéutico
18.
Circulation ; 117(25): 3187-98, 2008 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-18541744

RESUMEN

BACKGROUND: Defects in cardiomyocyte Ca(2+) cycling are a signature feature of heart failure (HF) that occurs in response to sustained hemodynamic overload, and they largely account for contractile dysfunction. Neuronal nitric oxide synthase (NOS1) influences myocyte excitation-contraction coupling through modulation of Ca(2+) cycling, but the potential relevance of this in HF is unknown. METHODS AND RESULTS: We generated a transgenic mouse with conditional, cardiomyocyte-specific NOS1 overexpression (double-transgenic [DT]) and studied cardiac remodeling, myocardial Ca(2+) handling, and contractility in DT and control mice subjected to transverse aortic constriction (TAC). After TAC, control mice developed eccentric hypertrophy with evolution toward HF as revealed by a significantly reduced fractional shortening. In contrast, DT mice developed a greater increase in wall thickness (P<0.0001 versus control+TAC) and less left ventricular dilatation than control+TAC mice (P<0.0001 for both end-systolic and end-diastolic dimensions). Thus, DT mice displayed concentric hypertrophy with fully preserved fractional shortening (43.7+/-0.6% versus 30.3+/-2.6% in control+TAC mice, P<0.05). Isolated cardiomyocytes from DT+TAC mice had greater shortening, intracellular Ca(2+) transients, and sarcoplasmic reticulum Ca(2+) load (P<0.05 versus control+TAC for all parameters). These effects could be explained, at least in part, through modulation of phospholamban phosphorylation status. CONCLUSIONS: Cardiomyocyte NOS1 may be a useful target against cardiac deterioration during chronic pressure-overload-induced HF through modulation of calcium cycling.


Asunto(s)
Calcio/metabolismo , Insuficiencia Cardíaca/fisiopatología , Miocitos Cardíacos/metabolismo , Óxido Nítrico Sintasa de Tipo I/biosíntesis , Animales , Aorta/fisiopatología , Presión Sanguínea , Separación Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Activación Enzimática/genética , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Humanos , Ratones , Ratones Transgénicos , Contracción Miocárdica/genética , Miocitos Cardíacos/enzimología , Óxido Nítrico Sintasa de Tipo I/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Función Ventricular Izquierda
19.
Am J Pathol ; 173(4): 1210-9, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18772329

RESUMEN

Microparticles are membrane vesicles that are released during cell activation and apoptosis. Elevated levels of microparticles occur in many cardiovascular diseases; therefore, we characterized circulating microparticles from both metabolic syndrome (MS) patients and healthy patients. We evaluated microparticle effects on endothelial function; however, links between circulating microparticles and endothelial dysfunction have not yet been demonstrated. Circulating microparticles and their cellular origins were examined by flow cytometry of blood samples from patients and healthy subjects. Microparticles were used either to treat human endothelial cells in vitro or to assess endothelium function in mice after intravenous injection. MS patients had increased circulating levels of microparticles compared with healthy patients, including microparticles from platelet, endothelial, erythrocyte, and procoagulant origins. In vitro treatment of endothelial cells with microparticles from MS patients reduced both nitric oxide (NO) and superoxide anion production, resulting in protein tyrosine nitration. These effects were associated with enhanced phosphorylation of endothelial NO synthase at the site of inhibition. The reduction of O2(-) was linked to both reduced expression of p47 phox of NADPH oxidase and overexpression of extracellular superoxide dismutase. The decrease in NO production was triggered by nonplatelet-derived microparticles. In vivo injection of MS microparticles into mice impaired endothelium-dependent relaxation and decreased endothelial NO synthase expression. These data provide evidence that circulating microparticles from MS patients influence endothelial dysfunction.


Asunto(s)
Endotelio Vascular/fisiopatología , Síndrome Metabólico/fisiopatología , Vesículas Transportadoras/metabolismo , Animales , Aorta/fisiopatología , Plaquetas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Células Endoteliales/enzimología , Células Endoteliales/metabolismo , Endotelio Vascular/enzimología , Femenino , Regulación de la Expresión Génica , Salud , Humanos , Técnicas In Vitro , Mediadores de Inflamación/metabolismo , Masculino , Síndrome Metabólico/enzimología , Ratones , Persona de Mediana Edad , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Superóxidos/metabolismo , Vasodilatación
20.
Am J Respir Crit Care Med ; 178(11): 1148-55, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-18723433

RESUMEN

RATIONALE: Sepsis is an archetypal condition with molecular links between inflammation and coagulation. Both events can be orchestrated by the interaction between circulating and vascular cells that under activation release microparticles. OBJECTIVES: We characterized circulating microparticles from both nonseptic subjects and patients with septic shock and evaluated their contribution to vascular function. METHODS: Circulating microparticles and their cell origin were measured in blood from 36 patients with septic shock and 18 nonseptic subjects by flow cytometry. Microparticles were then injected intravenously into mice and vascular reactivity was assessed in aorta. Expression and activity of enzymes involved in nitric oxide (NO) and cyclooxygenase metabolite production were analyzed. MEASUREMENTS AND MAIN RESULTS: Circulating levels of microparticles and platelet- and endothelial-derived microparticles were increased in septic patients. Surprisingly, septic microparticles enhanced the sensitivity of contraction of mouse aorta in response to serotonin. Interestingly, septic microparticles enhanced the contraction of aorta from lipopolysaccharide-treated mice. This effect was linked neither to increased calcium entry nor to Rho kinase inhibitor-sensitive mechanisms. In addition, the effect of septic microparticles was not modified either by NO-synthase or cyclooxygenase-2 inhibitors, and was not associated with NO or O2- overproduction. The nonselective cyclooxygenase-2 inhibitor indomethacin reduced, and the specific thromboxane A2 antagonist SQ-29548 abolished, aortic contraction in mice treated with nonseptic and septic microparticles. The effect of septic microparticles was associated with increased thromboxane A2 production, and was sensitive to a selective thromboxane A2 antagonist. CONCLUSIONS: We provide evidence that increased circulating microparticles are protective against vascular hyporeactivity accounting for hypotension in patients with septic shock.


Asunto(s)
Micropartículas Derivadas de Células/fisiología , Hipotensión/fisiopatología , Choque Séptico/sangre , Choque Séptico/fisiopatología , Vasoconstricción/fisiología , Adulto , Anciano , Animales , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Endotelio Vascular/fisiología , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Tromboxano A2/fisiología , Vasodilatación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA