Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 613(7944): 508-518, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36653562

RESUMEN

Population isolates such as those in Finland benefit genetic research because deleterious alleles are often concentrated on a small number of low-frequency variants (0.1% ≤ minor allele frequency < 5%). These variants survived the founding bottleneck rather than being distributed over a large number of ultrarare variants. Although this effect is well established in Mendelian genetics, its value in common disease genetics is less explored1,2. FinnGen aims to study the genome and national health register data of 500,000 Finnish individuals. Given the relatively high median age of participants (63 years) and the substantial fraction of hospital-based recruitment, FinnGen is enriched for disease end points. Here we analyse data from 224,737 participants from FinnGen and study 15 diseases that have previously been investigated in large genome-wide association studies (GWASs). We also include meta-analyses of biobank data from Estonia and the United Kingdom. We identified 30 new associations, primarily low-frequency variants, enriched in the Finnish population. A GWAS of 1,932 diseases also identified 2,733 genome-wide significant associations (893 phenome-wide significant (PWS), P < 2.6 × 10-11) at 2,496 (771 PWS) independent loci with 807 (247 PWS) end points. Among these, fine-mapping implicated 148 (73 PWS) coding variants associated with 83 (42 PWS) end points. Moreover, 91 (47 PWS) had an allele frequency of <5% in non-Finnish European individuals, of which 62 (32 PWS) were enriched by more than twofold in Finland. These findings demonstrate the power of bottlenecked populations to find entry points into the biology of common diseases through low-frequency, high impact variants.


Asunto(s)
Enfermedad , Frecuencia de los Genes , Fenotipo , Humanos , Persona de Mediana Edad , Enfermedad/genética , Estonia , Finlandia , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Metaanálisis como Asunto , Reino Unido , Población Blanca/genética
2.
Nature ; 604(7906): 509-516, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35396579

RESUMEN

Rare coding variation has historically provided the most direct connections between gene function and disease pathogenesis. By meta-analysing the whole exomes of 24,248 schizophrenia cases and 97,322 controls, we implicate ultra-rare coding variants (URVs) in 10 genes as conferring substantial risk for schizophrenia (odds ratios of 3-50, P < 2.14 × 10-6) and 32 genes at a false discovery rate of <5%. These genes have the greatest expression in central nervous system neurons and have diverse molecular functions that include the formation, structure and function of the synapse. The associations of the NMDA (N-methyl-D-aspartate) receptor subunit GRIN2A and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptor subunit GRIA3 provide support for dysfunction of the glutamatergic system as a mechanistic hypothesis in the pathogenesis of schizophrenia. We observe an overlap of rare variant risk among schizophrenia, autism spectrum disorders1, epilepsy and severe neurodevelopmental disorders2, although different mutation types are implicated in some shared genes. Most genes described here, however, are not implicated in neurodevelopment. We demonstrate that genes prioritized from common variant analyses of schizophrenia are enriched in rare variant risk3, suggesting that common and rare genetic risk factors converge at least partially on the same underlying pathogenic biological processes. Even after excluding significantly associated genes, schizophrenia cases still carry a substantial excess of URVs, which indicates that more risk genes await discovery using this approach.


Asunto(s)
Mutación , Trastornos del Neurodesarrollo , Esquizofrenia , Estudios de Casos y Controles , Exoma , Predisposición Genética a la Enfermedad/genética , Humanos , Trastornos del Neurodesarrollo/genética , Receptores de N-Metil-D-Aspartato/genética , Esquizofrenia/genética
3.
Am J Hum Genet ; 110(7): 1110-1122, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37369202

RESUMEN

Previous studies suggested that severe epilepsies, e.g., developmental and epileptic encephalopathies (DEEs), are mainly caused by ultra-rare de novo genetic variants. For milder disease, rare genetic variants could contribute to the phenotype. To determine the importance of rare variants for different epilepsy types, we analyzed a whole-exome sequencing cohort of 9,170 epilepsy-affected individuals and 8,436 control individuals. Here, we separately analyzed three different groups of epilepsies: severe DEEs, genetic generalized epilepsy (GGE), and non-acquired focal epilepsy (NAFE). We required qualifying rare variants (QRVs) to occur in control individuals with an allele count ≥ 1 and a minor allele frequency ≤ 1:1,000, to be predicted as deleterious (CADD ≥ 20), and to have an odds ratio in individuals with epilepsy ≥ 2. We identified genes enriched with QRVs primarily in NAFE (n = 72), followed by GGE (n = 32) and DEE (n = 21). This suggests that rare variants may play a more important role for causality of NAFE than for DEE. Moreover, we found that genes harboring QRVs, e.g., HSGP2, FLNA, or TNC, encode proteins that are involved in structuring the brain extracellular matrix. The present study confirms an involvement of rare variants for NAFE that occur also in the general population, while in DEE and GGE, the contribution of such variants appears more limited.


Asunto(s)
Epilepsia Generalizada , Humanos , Epilepsia Generalizada/genética , Fenotipo , Alelos , Encéfalo , Frecuencia de los Genes/genética
5.
Genome Res ; 30(1): 62-71, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31871067

RESUMEN

Missense variant interpretation is challenging. Essential regions for protein function are conserved among gene-family members, and genetic variants within these regions are potentially more likely to confer risk to disease. Here, we generated 2871 gene-family protein sequence alignments involving 9990 genes and performed missense variant burden analyses to identify novel essential protein regions. We mapped 2,219,811 variants from the general population into these alignments and compared their distribution with 76,153 missense variants from patients. With this gene-family approach, we identified 465 regions enriched for patient variants spanning 41,463 amino acids in 1252 genes. As a comparison, by testing the same genes individually, we identified fewer patient variant enriched regions, involving only 2639 amino acids and 215 genes. Next, we selected de novo variants from 6753 patients with neurodevelopmental disorders and 1911 unaffected siblings and observed an 8.33-fold enrichment of patient variants in our identified regions (95% C.I. = 3.90-Inf, P-value = 2.72 × 10-11). By using the complete ClinVar variant set, we found that missense variants inside the identified regions are 106-fold more likely to be classified as pathogenic in comparison to benign classification (OR = 106.15, 95% C.I = 70.66-Inf, P-value < 2.2 × 10-16). All pathogenic variant enriched regions (PERs) identified are available online through "PER viewer," a user-friendly online platform for interactive data mining, visualization, and download. In summary, our gene-family burden analysis approach identified novel PERs in protein sequences. This annotation can empower variant interpretation.


Asunto(s)
Mapeo Cromosómico , Predisposición Genética a la Enfermedad , Variación Genética , Familia de Multigenes , Alelos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Biología Computacional/métodos , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Mutación Missense , Programas Informáticos , Interfaz Usuario-Computador
6.
Proc Natl Acad Sci U S A ; 117(45): 28201-28211, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33106425

RESUMEN

Interpretation of the colossal number of genetic variants identified from sequencing applications is one of the major bottlenecks in clinical genetics, with the inference of the effect of amino acid-substituting missense variations on protein structure and function being especially challenging. Here we characterize the three-dimensional (3D) amino acid positions affected in pathogenic and population variants from 1,330 disease-associated genes using over 14,000 experimentally solved human protein structures. By measuring the statistical burden of variations (i.e., point mutations) from all genes on 40 3D protein features, accounting for the structural, chemical, and functional context of the variations' positions, we identify features that are generally associated with pathogenic and population missense variants. We then perform the same amino acid-level analysis individually for 24 protein functional classes, which reveals unique characteristics of the positions of the altered amino acids: We observe up to 46% divergence of the class-specific features from the general characteristics obtained by the analysis on all genes, which is consistent with the structural diversity of essential regions across different protein classes. We demonstrate that the function-specific 3D features of the variants match the readouts of mutagenesis experiments for BRCA1 and PTEN, and positively correlate with an independent set of clinically interpreted pathogenic and benign missense variants. Finally, we make our results available through a web server to foster accessibility and downstream research. Our findings represent a crucial step toward translational genetics, from highlighting the impact of mutations on protein structure to rationalizing the variants' pathogenicity in terms of the perturbed molecular mechanisms.


Asunto(s)
Mutación Missense/genética , Proteínas/química , Proteínas/genética , Secuencia de Aminoácidos , Proteína BRCA1/química , Proteína BRCA1/genética , Biología Computacional/métodos , Humanos , Aprendizaje Automático , Modelos Moleculares , Mutación Missense/fisiología , Fosfohidrolasa PTEN/química , Fosfohidrolasa PTEN/genética , Conformación Proteica , Proteínas/fisiología
7.
Brain ; 144(12): 3635-3650, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34114611

RESUMEN

Variants in KCNT1, encoding a sodium-gated potassium channel (subfamily T member 1), have been associated with a spectrum of epilepsies and neurodevelopmental disorders. These range from familial autosomal dominant or sporadic sleep-related hypermotor epilepsy to epilepsy of infancy with migrating focal seizures (EIMFS) and include developmental and epileptic encephalopathies. This study aims to provide a comprehensive overview of the phenotypic and genotypic spectrum of KCNT1 mutation-related epileptic disorders in 248 individuals, including 66 previously unpublished and 182 published cases, the largest cohort reported so far. Four phenotypic groups emerged from our analysis: (i) EIMFS (152 individuals, 33 previously unpublished); (ii) developmental and epileptic encephalopathies other than EIMFS (non-EIMFS developmental and epileptic encephalopathies) (37 individuals, 17 unpublished); (iii) autosomal dominant or sporadic sleep-related hypermotor epilepsy (53 patients, 14 unpublished); and (iv) other phenotypes (six individuals, two unpublished). In our cohort of 66 new cases, the most common phenotypic features were: (i) in EIMFS, heterogeneity of seizure types, including epileptic spasms, epilepsy improvement over time, no epilepsy-related deaths; (ii) in non-EIMFS developmental and epileptic encephalopathies, possible onset with West syndrome, occurrence of atypical absences, possible evolution to developmental and epileptic encephalopathies with sleep-related hypermotor epilepsy features; one case of sudden unexplained death in epilepsy; (iii) in autosomal dominant or sporadic sleep-related hypermotor epilepsy, we observed a high prevalence of drug-resistance, although seizure frequency improved with age in some individuals, appearance of cognitive regression after seizure onset in all patients, no reported severe psychiatric disorders, although behavioural/psychiatric comorbidities were reported in ∼50% of the patients, sudden unexplained death in epilepsy in one individual; and (iv) other phenotypes in individuals with mutation of KCNT1 included temporal lobe epilepsy, and epilepsy with tonic-clonic seizures and cognitive regression. Genotypic analysis of the whole cohort of 248 individuals showed only missense mutations and one inframe deletion in KCNT1. Although the KCNT1 mutations in affected individuals were seen to be distributed among the different domains of the KCNT1 protein, genotype-phenotype considerations showed many of the autosomal dominant or sporadic sleep-related hypermotor epilepsy-associated mutations to be clustered around the RCK2 domain in the C terminus, distal to the NADP domain. Mutations associated with EIMFS/non-EIMFS developmental and epileptic encephalopathies did not show a particular pattern of distribution in the KCNT1 protein. Recurrent KCNT1 mutations were seen to be associated with both severe and less severe phenotypes. Our study further defines and broadens the phenotypic and genotypic spectrums of KCNT1-related epileptic conditions and emphasizes the increasingly important role of this gene in the pathogenesis of early onset developmental and epileptic encephalopathies as well as of focal epilepsies, namely autosomal dominant or sporadic sleep-related hypermotor epilepsy.


Asunto(s)
Epilepsia/genética , Proteínas del Tejido Nervioso/genética , Canales de potasio activados por Sodio/genética , Adolescente , Niño , Preescolar , Estudios de Cohortes , Femenino , Genotipo , Humanos , Lactante , Masculino , Mutación , Fenotipo , Adulto Joven
8.
Nucleic Acids Res ; 48(W1): W132-W139, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32402084

RESUMEN

Human genome sequencing efforts have greatly expanded, and a plethora of missense variants identified both in patients and in the general population is now publicly accessible. Interpretation of the molecular-level effect of missense variants, however, remains challenging and requires a particular investigation of amino acid substitutions in the context of protein structure and function. Answers to questions like 'Is a variant perturbing a site involved in key macromolecular interactions and/or cellular signaling?', or 'Is a variant changing an amino acid located at the protein core or part of a cluster of known pathogenic mutations in 3D?' are crucial. Motivated by these needs, we developed MISCAST (missense variant to protein structure analysis web suite; http://miscast.broadinstitute.org/). MISCAST is an interactive and user-friendly web server to visualize and analyze missense variants in protein sequence and structure space. Additionally, a comprehensive set of protein structural and functional features have been aggregated in MISCAST from multiple databases, and displayed on structures alongside the variants to provide users with the biological context of the variant location in an integrated platform. We further made the annotated data and protein structures readily downloadable from MISCAST to foster advanced offline analysis of missense variants by a wide biological community.


Asunto(s)
Mutación Missense , Conformación Proteica , Programas Informáticos , Humanos , Internet , Proteínas/química , Proteínas/genética
9.
J Lipid Res ; 62: 100105, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34390703

RESUMEN

The leptin receptor (Lepr) pathway is important for food intake regulation, energy expenditure, and body weight. Mutations in leptin and the Lepr have been shown to cause early-onset severe obesity in mice and humans. In studies with C57BL/6NCrl mice, we found a mouse with extreme obesity. To identify a putative spontaneous new form of monogenic obesity, we performed backcross studies with this mouse followed by a quantitative trait locus (QTL) analysis and sequencing of the selected chromosomal QTL region. We thereby identified a novel Lepr mutation (C57BL/6N-LeprL536Hfs*6-1NKB), which is located at chromosome 4, exon 11 within the CRH2-leptin-binding site. Compared with C57BL/6N mice, LeprL536Hfs*6 develop early onset obesity and their body weight exceeds that of Leprdb/db mice at an age of 30 weeks. Similar to Leprdb/db mice, the LeprL536Hfs*6 model is characterized by hyperphagia, obesity, lower energy expenditure and activity, hyperglycemia, and hyperinsulinemia compared with C57BL/6N mice. Crossing Leprdb/wt with LeprL536Hfs*6/wt mice results in compound heterozygous LeprL536Hfs*6/db mice, which develop even higher body weight and fat mass than both homozygous Leprdb/db and LeprL536Hfs*6 mice. Compound heterozygous Lepr deficiency affecting functionally different regions of the Lepr causes more severe obesity than the parental homozygous mutations.


Asunto(s)
Obesidad/genética , Receptores de Leptina/genética , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , Mutación
10.
Brain ; 142(1): 80-92, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30544257

RESUMEN

Alterations of the N-methyl-d-aspartate receptor (NMDAR) subunit GluN2A, encoded by GRIN2A, have been associated with a spectrum of neurodevelopmental disorders with prominent speech-related features, and epilepsy. We performed a comprehensive assessment of phenotypes with a standardized questionnaire in 92 previously unreported individuals with GRIN2A-related disorders. Applying the criteria of the American College of Medical Genetics and Genomics to all published variants yielded 156 additional cases with pathogenic or likely pathogenic variants in GRIN2A, resulting in a total of 248 individuals. The phenotypic spectrum ranged from normal or near-normal development with mild epilepsy and speech delay/apraxia to severe developmental and epileptic encephalopathy, often within the epilepsy-aphasia spectrum. We found that pathogenic missense variants in transmembrane and linker domains (misTMD+Linker) were associated with severe developmental phenotypes, whereas missense variants within amino terminal or ligand-binding domains (misATD+LBD) and null variants led to less severe developmental phenotypes, which we confirmed in a discovery (P = 10-6) as well as validation cohort (P = 0.0003). Other phenotypes such as MRI abnormalities and epilepsy types were also significantly different between the two groups. Notably, this was paralleled by electrophysiology data, where misTMD+Linker predominantly led to NMDAR gain-of-function, while misATD+LBD exclusively caused NMDAR loss-of-function. With respect to null variants, we show that Grin2a+/- cortical rat neurons also had reduced NMDAR function and there was no evidence of previously postulated compensatory overexpression of GluN2B. We demonstrate that null variants and misATD+LBD of GRIN2A do not only share the same clinical spectrum (i.e. milder phenotypes), but also result in similar electrophysiological consequences (loss-of-function) opposing those of misTMD+Linker (severe phenotypes; predominantly gain-of-function). This new pathomechanistic model may ultimately help in predicting phenotype severity as well as eligibility for potential precision medicine approaches in GRIN2A-related disorders.


Asunto(s)
Epilepsia/genética , Trastornos del Neurodesarrollo/genética , Receptores de N-Metil-D-Aspartato/genética , Adolescente , Adulto , Anciano , Animales , Células Cultivadas , Corteza Cerebelosa/metabolismo , Niño , Preescolar , Epilepsia/fisiopatología , Femenino , Genotipo , Humanos , Lactante , Masculino , Persona de Mediana Edad , Mutación , Trastornos del Neurodesarrollo/fisiopatología , Fenotipo , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/fisiología , Adulto Joven
11.
Genet Med ; 21(11): 2496-2503, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31056551

RESUMEN

PURPOSE: We aimed to gain insight into frequencies of genetic variants in genes implicated in neurodevelopmental disorder with epilepsy (NDD+E) by investigating large cohorts of patients in a diagnostic setting. METHODS: We analyzed variants in NDD+E using epilepsy gene panel sequencing performed between 2013 and 2017 by two large diagnostic companies. We compared variant frequencies in 6994 panels with another 8588 recently published panels as well as exome-wide de novo variants in 1942 individuals with NDD+E and 10,937 controls. RESULTS: Genes with highest frequencies of ultrarare variants in NDD+E comprised SCN1A, KCNQ2, SCN2A, CDKL5, SCN8A, and STXBP1, concordant with the two other epilepsy cohorts we investigated. In only 46% of the analyzed 262 dominant and X-linked panel genes ultrarare variants in patients were reported. Among genes with contradictory evidence of association with epilepsy, CACNB4, CLCN2, EFHC1, GABRD, MAGI2, and SRPX2 showed equal frequencies in cases and controls. CONCLUSION: We show that improvement of panel design increased diagnostic yield over time, but panels still display genes with low or no diagnostic yield. With our data, we hope to improve current diagnostic NDD+E panel design and provide a resource of ultrarare variants in individuals with NDD+E to the community.


Asunto(s)
Epilepsia/genética , Pruebas Genéticas/métodos , Trastornos del Neurodesarrollo/genética , Estudios de Casos y Controles , Epilepsia/diagnóstico , Femenino , Frecuencia de los Genes/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas/normas , Variación Genética/genética , Genotipo , Humanos , Masculino , Trastornos del Neurodesarrollo/diagnóstico , Fenotipo
12.
Brain ; 140(9): 2322-2336, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29050398

RESUMEN

De novo in-frame deletions and duplications in the SPTAN1 gene, encoding the non-erythrocyte αII spectrin, have been associated with severe West syndrome with hypomyelination and pontocerebellar atrophy. We aimed at comprehensively delineating the phenotypic spectrum associated with SPTAN1 mutations. Using different molecular genetic techniques, we identified 20 patients with a pathogenic or likely pathogenic SPTAN1 variant and reviewed their clinical, genetic and imaging data. SPTAN1 de novo alterations included seven unique missense variants and nine in-frame deletions/duplications of which 12 were novel. The recurrent three-amino acid duplication p.(Asp2303_Leu2305dup) occurred in five patients. Our patient cohort exhibited a broad spectrum of neurodevelopmental phenotypes, comprising six patients with mild to moderate intellectual disability, with or without epilepsy and behavioural disorders, and 14 patients with infantile epileptic encephalopathy, of which 13 had severe neurodevelopmental impairment and four died in early childhood. Imaging studies suggested that the severity of neurological impairment and epilepsy correlates with that of structural abnormalities as well as the mutation type and location. Out of seven patients harbouring mutations outside the α/ß spectrin heterodimerization domain, four had normal brain imaging and three exhibited moderately progressive brain and/or cerebellar atrophy. Twelve of 13 patients with mutations located within the spectrin heterodimer contact site exhibited severe and progressive brain, brainstem and cerebellar atrophy, with hypomyelination in most. We used fibroblasts from five patients to study spectrin aggregate formation by Triton-X extraction and immunocytochemistry followed by fluorescence microscopy. αII/ßII aggregates and αII spectrin in the insoluble protein fraction were observed in fibroblasts derived from patients with the mutations p.(Glu2207del), p.(Asp2303_Leu2305dup) and p.(Arg2308_Met2309dup), all falling in the nucleation site of the α/ß spectrin heterodimer region. Molecular modelling of the seven SPTAN1 amino acid changes provided preliminary evidence for structural alterations of the A-, B- and/or C-helices within each of the mutated spectrin repeats. We conclude that SPTAN1-related disorders comprise a wide spectrum of neurodevelopmental phenotypes ranging from mild to severe and progressive. Spectrin aggregate formation in fibroblasts with mutations in the α/ß heterodimerization domain seems to be associated with a severe neurodegenerative course and suggests that the amino acid stretch from Asp2303 to Met2309 in the α20 repeat is important for α/ß spectrin heterodimer formation and/or αII spectrin function.


Asunto(s)
Encefalopatías/genética , Encéfalo/patología , Proteínas Portadoras/genética , Epilepsia/genética , Proteínas de Microfilamentos/genética , Adolescente , Atrofia/complicaciones , Atrofia/patología , Encéfalo/anomalías , Encefalopatías/complicaciones , Proteínas Portadoras/metabolismo , Células Cultivadas , Niño , Preescolar , Progresión de la Enfermedad , Epilepsia/complicaciones , Femenino , Fibroblastos/metabolismo , Humanos , Masculino , Proteínas de Microfilamentos/metabolismo , Modelos Moleculares , Mutación , Trastornos del Neurodesarrollo/complicaciones , Trastornos del Neurodesarrollo/genética , Fenotipo , Agregación Patológica de Proteínas/metabolismo , Adulto Joven
13.
J Med Genet ; 54(7): 460-470, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28377535

RESUMEN

BACKGROUND: We aimed for a comprehensive delineation of genetic, functional and phenotypic aspects of GRIN2B encephalopathy and explored potential prospects of personalised medicine. METHODS: Data of 48 individuals with de novo GRIN2B variants were collected from several diagnostic and research cohorts, as well as from 43 patients from the literature. Functional consequences and response to memantine treatment were investigated in vitro and eventually translated into patient care. RESULTS: Overall, de novo variants in 86 patients were classified as pathogenic/likely pathogenic. Patients presented with neurodevelopmental disorders and a spectrum of hypotonia, movement disorder, cortical visual impairment, cerebral volume loss and epilepsy. Six patients presented with a consistent malformation of cortical development (MCD) intermediate between tubulinopathies and polymicrogyria. Missense variants cluster in transmembrane segments and ligand-binding sites. Functional consequences of variants were diverse, revealing various potential gain-of-function and loss-of-function mechanisms and a retained sensitivity to the use-dependent blocker memantine. However, an objectifiable beneficial treatment response in the respective patients still remains to be demonstrated. CONCLUSIONS: In addition to previously known features of intellectual disability, epilepsy and autism, we found evidence that GRIN2B encephalopathy is also frequently associated with movement disorder, cortical visual impairment and MCD revealing novel phenotypic consequences of channelopathies.


Asunto(s)
Encefalopatías/genética , Mutación/genética , Receptores de N-Metil-D-Aspartato/genética , Encefalopatías/tratamiento farmacológico , Heterocigoto , Humanos , Imagen por Resonancia Magnética , Memantina/uso terapéutico , Terapia Molecular Dirigida , Neuroimagen , Fenotipo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo
14.
Nat Commun ; 15(1): 6277, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054313

RESUMEN

A diagnosis of epilepsy has significant consequences for an individual but is often challenging in clinical practice. Novel biomarkers are thus greatly needed. Here, we investigated how common genetic factors (epilepsy polygenic risk scores, [PRSs]) influence epilepsy risk in detailed longitudinal electronic health records (EHRs) of > 700k Finns and Estonians. We found that a high genetic generalized epilepsy PRS (PRSGGE) increased risk for genetic generalized epilepsy (GGE) (hazard ratio [HR] 1.73 per PRSGGE standard deviation [SD]) across lifetime and within 10 years after an unspecified seizure event. The effect of PRSGGE was significantly larger on idiopathic generalized epilepsies, in females and for earlier epilepsy onset. Analogously, we found significant but more modest focal epilepsy PRS burden associated with non-acquired focal epilepsy (NAFE). Here, we outline the potential of epilepsy specific PRSs to serve as biomarkers after a first seizure event.


Asunto(s)
Epilepsia Generalizada , Predisposición Genética a la Enfermedad , Herencia Multifactorial , Convulsiones , Humanos , Femenino , Masculino , Adulto , Herencia Multifactorial/genética , Convulsiones/genética , Persona de Mediana Edad , Factores de Riesgo , Epilepsia Generalizada/genética , Adulto Joven , Adolescente , Epilepsia/genética , Epilepsia/epidemiología , Biomarcadores , Epilepsias Parciales/genética , Niño , Anciano , Estudios Longitudinales , Registros Electrónicos de Salud , Puntuación de Riesgo Genético
15.
Nat Commun ; 15(1): 1294, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378781

RESUMEN

Aneuploidies, and in particular, trisomies represent the most common genetic aberrations observed in human genetics today. To explore the presence of trisomies in historic and prehistoric populations we screen nearly 10,000 ancient human individuals for the presence of three copies of any of the target autosomes. We find clear genetic evidence for six cases of trisomy 21 (Down syndrome) and one case of trisomy 18 (Edwards syndrome), and all cases are present in infant or perinatal burials. We perform comparative osteological examinations of the skeletal remains and find overlapping skeletal markers, many of which are consistent with these syndromes. Interestingly, three cases of trisomy 21, and the case of trisomy 18 were detected in two contemporaneous sites in early Iron Age Spain (800-400 BCE), potentially suggesting a higher frequency of burials of trisomy carriers in those societies. Notably, the care with which the burials were conducted, and the items found with these individuals indicate that ancient societies likely acknowledged these individuals with trisomy 18 and 21 as members of their communities, from the perspective of burial practice.


Asunto(s)
Trastornos de los Cromosomas , Síndrome de Down , Embarazo , Femenino , Humanos , Síndrome de Down/genética , Trisomía/genética , Síndrome de la Trisomía 18/genética , Trastornos de los Cromosomas/genética , ADN Antiguo , Síndrome de la Trisomía 13
16.
medRxiv ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38076931

RESUMEN

A diagnosis of epilepsy has significant consequences for an individual but is often challenging in clinical practice. Novel biomarkers are thus greatly needed. Here, we investigated how common genetic factors (epilepsy polygenic risk scores, [PRSs]) influence epilepsy risk in detailed longitudinal electronic health records (EHRs) of > 360k Finns spanning up to 50 years of individuals' lifetimes. Individuals with a high genetic generalized epilepsy PRS (PRSGGE) in FinnGen had an increased risk for genetic generalized epilepsy (GGE) (hazard ratio [HR] 1.55 per PRSGGE standard deviation [SD]) across their lifetime and after unspecified seizure events. Effect sizes of epilepsy PRSs were comparable to effect sizes in clinically curated data supporting our EHR-derived epilepsy diagnoses. Within 10 years after an unspecified seizure, the GGE rate was 37% when PRSGGE > 2 SD compared to 5.6% when PRSGGE < -2 SD. The effect of PRSGGE was even larger on GGE subtypes of idiopathic generalized epilepsy (IGE) (HR 2.1 per SD PRSGGE). We further report significantly larger effects of PRSGGE on epilepsy in females and in younger age groups. Analogously, we found significant but more modest focal epilepsy PRS burden associated with non-acquired focal epilepsy (NAFE). We found PRSGGE specifically associated with GGE in comparison with >2000 independent diseases while PRSNAFE was also associated with other diseases than NAFE such as back pain. Here, we show that epilepsy specific PRSs have good discriminative ability after a first seizure event i.e. in circumstances where the prior probability of epilepsy is high outlining a potential to serve as biomarkers for an epilepsy diagnosis.

17.
BMC Med Genomics ; 16(1): 73, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37020303

RESUMEN

PURPOSE: Due to the increasing application of genome analysis and interpretation in medical disciplines, professionals require adequate education. Here, we present the implementation of personal genotyping as an educational tool in two genomics courses targeting Digital Health students at the Hasso Plattner Institute (HPI) and medical students at the Technical University of Munich (TUM). METHODS: We compared and evaluated the courses and the students' perceptions on the course setup using questionnaires. RESULTS: During the course, students changed their attitudes towards genotyping (HPI: 79% [15 of 19], TUM: 47% [25 of 53]). Predominantly, students became more critical of personal genotyping (HPI: 73% [11 of 15], TUM: 72% [18 of 25]) and most students stated that genetic analyses should not be allowed without genetic counseling (HPI: 79% [15 of 19], TUM: 70% [37 of 53]). Students found the personal genotyping component useful (HPI: 89% [17 of 19], TUM: 92% [49 of 53]) and recommended its inclusion in future courses (HPI: 95% [18 of 19], TUM: 98% [52 of 53]). CONCLUSION: Students perceived the personal genotyping component as valuable in the described genomics courses. The implementation described here can serve as an example for future courses in Europe.


Asunto(s)
Pruebas Genéticas , Estudiantes , Humanos , Universidades , Genómica/educación , Escolaridad , Encuestas y Cuestionarios
18.
medRxiv ; 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36974069

RESUMEN

Previous studies suggested that severe epilepsies e.g., developmental and epileptic encephalopathies (DEE) are mainly caused by ultra-rare de novo genetic variants. For milder phenotypes, rare genetic variants could contribute to the phenotype. To determine the importance of rare variants for different epilepsy types, we analyzed a whole-exome sequencing cohort of 9,170 epilepsy-affected individuals and 8,436 controls. Here, we separately analyzed three different groups of epilepsies : severe DEEs, genetic generalized epilepsy (GGE), and non-acquired focal epilepsy (NAFE). We required qualifying rare variants (QRVs) to occur in controls at a minor allele frequency ≤ 1:1,000, to be predicted as deleterious (CADD≥20), and to have an odds ratio in epilepsy cases ≥2. We identified genes enriched with QRVs in DEE (n=21), NAFE (n=72), and GGE (n=32) - the number of enriched genes are found greatest in NAFE and least in DEE. This suggests that rare variants may play a more important role for causality of NAFE than in DEE. Moreover, we found that QRV-carrying genes e.g., HSGP2, FLNA or TNC are involved in structuring the brain extracellular matrix. The present study confirms an involvement of rare variants for NAFE, while in DEE and GGE, the contribution of such variants appears more limited.

19.
Med Genet ; 34(3): 225-230, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38835881

RESUMEN

An epilepsy diagnosis has large consequences for an individual but is often difficult to make in clinical practice. Novel biomarkers are thus greatly needed. Here, we give an overview of how thousands of common genetic factors that increase the risk for epilepsy can be summarized as epilepsy polygenic risk scores (PRS). We discuss the current state of research on how epilepsy PRS can serve as a biomarker for the risk for epilepsy. The high heritability of common forms of epilepsy, particularly genetic generalized epilepsy, indicates a promising potential for epilepsy PRS in diagnosis and risk prediction. Small sample sizes and low ancestral diversity of current epilepsy genome-wide association studies show, however, a need for larger and more diverse studies before epilepsy PRS could be properly implemented in the clinic.

20.
Sci Adv ; 7(39): eabi7673, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34559560

RESUMEN

The origin, development, and legacy of the enigmatic Etruscan civilization from the central region of the Italian peninsula known as Etruria have been debated for centuries. Here we report a genomic time transect of 82 individuals spanning almost two millennia (800 BCE to 1000 CE) across Etruria and southern Italy. During the Iron Age, we detect a component of Indo-European­associated steppe ancestry and the lack of recent Anatolian-related admixture among the putative non­Indo-European­speaking Etruscans. Despite comprising diverse individuals of central European, northern African, and Near Eastern ancestry, the local gene pool is largely maintained across the first millennium BCE. This drastically changes during the Roman Imperial period where we report an abrupt population-wide shift to ~50% admixture with eastern Mediterranean ancestry. Last, we identify northern European components appearing in central Italy during the Early Middle Ages, which thus formed the genetic landscape of present-day Italian populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA