Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123455

RESUMEN

OBJECTIVES: In Santiago, Chile, where typhoid had been hyperendemic (1977-1991), we investigated whether residual chronic carriers could be detected among household contacts of non-travel-related typhoid cases occurring 2017-2019. METHODS: Culture-confirmed cases were classified as "autochthonous" (domestically-acquired) versus "travel/immigration-related". Household contacts of cases had stool cultures and serum Vi antibody measurements to detect chronic Salmonella Typhi carriers. Whole genome sequences of acute cases and their epidemiologically-linked chronic carrier isolates were compared. RESULTS: Five of 16 autochthonous typhoid cases (31.3%) were linked to four chronic carriers in case households; two cases (onsets 23 months apart) were linked to the same carrier. Carriers were women aged 69-79 years with gallbladder dysfunction and Typhi fecal excretion; three had highly elevated serum anti-Vi titers. Genomic analyses revealed close identity (≤11 core genome SNP [Single Nucleotide Polymorphism] differences) between case and epidemiologically-linked carrier isolates; all were genotypes prevalent in 1980s Santiago. A cluster of four additional autochthonous cases un-linked to a carrier was identified based on genomic identity (0-1 SNPs). Travel/immigration isolate genotypes were typical for the countries of travel/immigration. CONCLUSIONS: Although autochthonous typhoid cases in Santiago are currently rare, 5/16 such cases (31.3%) were linked to elderly chronic carriers identified among household contacts of cases.

2.
Clin Infect Dis ; 75(1): e97-e101, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34718446

RESUMEN

Airborne severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was detected in a coronavirus disease 19 (COVID-19) ward before activation of HEPA-air filtration but not during filter operation; SARS-CoV-2 was again detected following filter deactivation. Airborne SARS-CoV-2 was infrequently detected in a COVID-19 intensive care unit. Bioaerosol was also effectively filtered.


Asunto(s)
COVID-19 , SARS-CoV-2 , Hospitales , Humanos
3.
J Infect Dis ; 224(12 Suppl 2): S840-S847, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34374428

RESUMEN

Antimicrobials are a key group of therapeutic agents. Given the animal/human population density and high antimicrobial consumption rate in Southeast Asia, the region is a focal area for monitoring antimicrobial resistance (AMR). Hypothesizing that the gastrointestinal tract of healthy individuals in Vietnam is a major source of AMR genes that may be transferred to pathogens, we performed shotgun metagenomic sequencing on fecal samples from 42 healthy Vietnamese people (21 children and 21 adults). We compared their microbiome profiles by age group and determined the composition of AMR genes. An analysis of the taxonomic profiles in the gut microbiome showed a clear differentiation by age, with young children (age <2 years) exhibiting a unique structure in comparison to adults and older children. We identified a total of 132 unique AMR genes, with macrolide, lincosamide, and streptogramin class resistance genes (ermB and lnuC) and tetracycline resistance genes being almost ubiquitous across the study population. Notably, samples from younger children were significantly associated with a greater number of AMR genes than other age groups, including key signature genes associated with AMR pathogens (eg, blaCTX-M, mphA). Our data suggest that the gut microbiome of those living in Vietnam, particularly young children, is a substantial reservoir of AMR genes, which can be transferred to circulating enteric pathogens. Our data support the generation of longitudinal cohort studies of those living in urban and rural areas of developing countries to understand the behavior of these AMR reservoirs and their role in generating multidrug-resistant and extensively drug-resistant pathogens.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Heces/microbiología , Microbioma Gastrointestinal , Metagenómica , Adolescente , Adulto , Anciano , Animales , Pueblo Asiatico , Niño , Preescolar , Farmacorresistencia Bacteriana/efectos de los fármacos , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Vietnam
4.
Infect Immun ; 89(10): e0008721, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34310885

RESUMEN

Salmonella Typhimurium is a common cause of foodborne gastroenteritis and a less frequent but important cause of invasive disease, especially in developing countries. In our previous work, we showed that a live-attenuated S. Typhimurium vaccine (CVD 1921) was safe and immunogenic in rhesus macaques, although shed for an unacceptably long period (10 days) postimmunization. Consequently, we engineered a new strain, CVD 1926, which was shown to be safe and immunogenic in mice, as well as less reactogenic in mice and human cell-derived organoids than CVD 1921. In this study, we assessed the reactogenicity and efficacy of CVD 1926 in rhesus macaques. Animals were given two doses of either CVD 1926 or saline perorally. The vaccine was well-tolerated, with shedding in stool limited to a mean of 5 days. All CVD 1926-immunized animals had both a serological and a T cell response to vaccination. At 4 weeks postimmunization, animals were challenged with wild-type S. Typhimurium I77. Unvaccinated (saline) animals had severe diarrhea, with two animals succumbing to infection. Animals receiving CVD 1926 were largely protected, with only one animal having moderate diarrhea. Vaccine efficacy in this gastroenteritis model was 80%. S. Typhimurium vaccine strain CVD 1926 was safe and effective in rhesus macaques and shed for a shorter period than other previously tested live-attenuated vaccine strains. This strain could be combined with other live-attenuated Salmonella vaccine strains to create a pan-Salmonella vaccine.


Asunto(s)
Gastroenteritis/inmunología , Inmunogenicidad Vacunal/inmunología , Macaca mulatta/inmunología , Salmonelosis Animal/inmunología , Vacunas contra la Salmonella/inmunología , Salmonella typhimurium/inmunología , Administración Oral , Animales , Anticuerpos Antibacterianos/inmunología , Proteínas Bacterianas/inmunología , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Leucocitos Mononucleares/inmunología , Vacunación/métodos
5.
Crit Care ; 25(1): 25, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33430915

RESUMEN

BACKGROUND: Pandemic COVID-19 caused by the coronavirus SARS-CoV-2 has a high incidence of patients with severe acute respiratory syndrome (SARS). Many of these patients require admission to an intensive care unit (ICU) for invasive ventilation and are at significant risk of developing a secondary, ventilator-associated pneumonia (VAP). OBJECTIVES: To study the incidence of VAP and bacterial lung microbiome composition of ventilated COVID-19 and non-COVID-19 patients. METHODS: In this retrospective observational study, we compared the incidence of VAP and secondary infections using a combination of microbial culture and a TaqMan multi-pathogen array. In addition, we determined the lung microbiome composition using 16S RNA analysis in a subset of samples. The study involved 81 COVID-19 and 144 non-COVID-19 patients receiving invasive ventilation in a single University teaching hospital between March 15th 2020 and August 30th 2020. RESULTS: COVID-19 patients were significantly more likely to develop VAP than patients without COVID (Cox proportional hazard ratio 2.01 95% CI 1.14-3.54, p = 0.0015) with an incidence density of 28/1000 ventilator days versus 13/1000 for patients without COVID (p = 0.009). Although the distribution of organisms causing VAP was similar between the two groups, and the pulmonary microbiome was similar, we identified 3 cases of invasive aspergillosis amongst the patients with COVID-19 but none in the non-COVID-19 cohort. Herpesvirade activation was also numerically more frequent amongst patients with COVID-19. CONCLUSION: COVID-19 is associated with an increased risk of VAP, which is not fully explained by the prolonged duration of ventilation. The pulmonary dysbiosis caused by COVID-19, and the causative organisms of secondary pneumonia observed are similar to that seen in critically ill patients ventilated for other reasons.


Asunto(s)
COVID-19/epidemiología , COVID-19/terapia , Enfermedad Crítica/epidemiología , Enfermedad Crítica/terapia , Neumonía Asociada al Ventilador/epidemiología , Anciano , COVID-19/diagnóstico , Femenino , Humanos , Unidades de Cuidados Intensivos/tendencias , Masculino , Persona de Mediana Edad , Neumonía Asociada al Ventilador/diagnóstico , Estudios Retrospectivos
6.
Clin Infect Dis ; 71(Suppl 2): S120-S126, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32725232

RESUMEN

BACKGROUND: Typhoid fever has been endemic on the island nation of Samoa (2016 population, 195 979) since the 1960s and has persisted through 2019, despite economic development and improvements in water supply and sanitation. METHODS: Salmonella enterica serovar Typhi isolates from the 2 hospitals with blood culture capability and matched patient demographic and clinical data from January 2008 through December 2019 were analyzed. Denominators to calculate incidence by island, region, and district came from 2011 and 2016 censuses and from 2017-2019 projections from Samoa's Bureau of Statistics. Data were analyzed to describe typhoid case burden and incidence from 2008 to 2019 by time, place, and person. RESULTS: In sum, 53-193 blood culture-confirmed typhoid cases occurred annually from 2008 to 2019, without apparent seasonality. Typhoid incidence was low among children age < 48 months (17.6-27.8/105), rose progressively in ages 5-9 years (54.0/105), 10-19 years (60.7-63.4/105), and 20-34 years (61.0-79.3/105), and then tapered off; 93.6% of cases occurred among Samoans < 50 years of age. Most typhoid cases and the highest incidence occurred in Northwest Upolu, but Apia Urban Area (served by treated water supplies) also exhibited moderate incidence. The proportion of cases from short-cycle versus long-cycle transmission is unknown. Samoan S. Typhi are pansusceptible to traditional first-line antibiotics. Nevertheless, enhanced surveillance in 2019 detected 4 (2.9%) deaths among 140 cases. CONCLUSIONS: Typhoid has been endemic in Samoa in the period 2008-2019. Interventions, including mass vaccination with a Vi-conjugate vaccine coadministered with measles vaccine are planned.


Asunto(s)
Fiebre Tifoidea , Vacunas Tifoides-Paratifoides , Niño , Preescolar , Humanos , Lactante , Salmonella typhi , Samoa , Fiebre Tifoidea/epidemiología , Vacunas Conjugadas
7.
Emerg Infect Dis ; 26(11): 2736-2740, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33079054

RESUMEN

Salmonella enterica serovar Typhi H58, an antimicrobial-resistant lineage, is globally disseminated but has not been reported in Latin America. Genomic analysis revealed 3 independent introductions of Salmonella Typhi H58 with reduced fluoroquinolone susceptibility into Chile. Our findings highlight the utility of enhanced genomic surveillance for typhoid fever in this region.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Fluoroquinolonas/farmacología , Salmonella typhi , Fiebre Tifoidea , Chile/epidemiología , Humanos , Pruebas de Sensibilidad Microbiana , Salmonella typhi/efectos de los fármacos , Salmonella typhi/genética , Fiebre Tifoidea/epidemiología , Fiebre Tifoidea/microbiología
8.
BMC Microbiol ; 20(1): 192, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620076

RESUMEN

BACKGROUND: Diarrhoeagenic Escherichia coli (DEC) infections are common in children in low-middle income countries (LMICs). However, detecting the various DEC pathotypes is complex as they cannot be differentiated by classical microbiology. We developed four multiplex real-time PCR assays were to detect virulence markers of six DEC pathotypes; specificity was tested using DEC controls and other enteric pathogens. PCR amplicons from the six E. coli pathotypes were purified and amplified to be used to optimize PCR reactions and to calculate reproducibility. After validation, these assays were applied to clinical samples from healthy and diarrhoeal Vietnamese children and associated with clinical data. RESULTS: The multiplex real-time PCRs were found to be reproducible, and specific. At least one DEC variant was detected in 34.7% (978/2815) of the faecal samples from diarrhoeal children; EAEC, EIEC and atypical EPEC were most frequent Notably, 41.2% (205/498) of samples from non-diarrhoeal children was positive with a DEC pathotype. In this population, only EIEC, which was detected in 34.3% (99/289) of diarrhoeal samples vs. 0.8% (4/498) non-diarrhoeal samples (p < 0.001), was significantly associated with diarrhoea. Multiplex real-time PCR when applied to clinical samples is an efficient and high-throughput approach to DEC pathotypes. CONCLUSIONS: This approach revealed high carriage rates of DEC pathotypes among Vietnamese children. We describe a novel diagnostic approach for DEC, which provides baseline data for future surveillance studies assessing DEC burden in LMICs.


Asunto(s)
Diarrea/microbiología , Escherichia coli Enteropatógena/clasificación , Infecciones por Escherichia coli/diagnóstico , Infecciones por Escherichia coli/epidemiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Adolescente , Niño , Preescolar , Diarrea/epidemiología , Escherichia coli Enteropatógena/genética , Escherichia coli Enteropatógena/aislamiento & purificación , Escherichia coli Enteropatógena/patogenicidad , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Reacción en Cadena de la Polimerasa Multiplex , Prevalencia , Sensibilidad y Especificidad , Vietnam/epidemiología , Factores de Virulencia de Bordetella
9.
Infect Immun ; 86(12)2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30249748

RESUMEN

A notable proportion of Salmonella-associated gastroenteritis in the United States is attributed to Salmonella enterica serovar Typhimurium. We have previously shown that live-attenuated S Typhimurium vaccine candidate CVD 1921 (I77 ΔguaBA ΔclpP) was safe and immunogenic in rhesus macaques but was shed for an undesirably long time postimmunization. In mice, occasional mortality postvaccination was also noted (approximately 1 in every 15 mice). Here we describe a further attenuated vaccine candidate strain harboring deletions in two additional genes, htrA and pipA We determined that S Typhimurium requires pipA to elicit fluid accumulation in a rabbit ileal loop model of gastroenteritis, as an S Typhimurium ΔpipA mutant induced significantly less fluid accumulation in rabbit loops than the wild-type strain. New vaccine strain CVD 1926 (I77 ΔguaBA ΔclpP ΔpipA ΔhtrA) was assessed for inflammatory potential in an organoid model of human intestinal mucosa, where it induced less inflammatory cytokine production than organoids exposed to the precursor vaccine, CVD 1921. To assess vaccine safety and efficacy, mice were given three doses of CVD 1926 (109 CFU/dose) by oral gavage, and at 1 or 3 months postimmunization, mice were challenged with 700 or 100 LD50 (50% lethal doses), respectively, of wild-type strain I77. CVD 1926 was well tolerated and exhibited 47% vaccine efficacy following challenge with a high inoculum and 60% efficacy after challenge with a low inoculum of virulent S Typhimurium. CVD 1926 is less reactogenic yet equally as immunogenic and protective as previous iterations in a mouse model.


Asunto(s)
Inmunogenicidad Vacunal , Inflamación/inmunología , Mucosa Intestinal/inmunología , Infecciones por Salmonella/prevención & control , Vacunas contra la Salmonella/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Citocinas/inmunología , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Humanos , Mucosa Intestinal/microbiología , Ratones , Ratones Endogámicos BALB C , Mutación , Organoides/inmunología , Organoides/microbiología , Conejos , Infecciones por Salmonella/inmunología , Vacunas contra la Salmonella/efectos adversos , Salmonella typhimurium/inmunología , Vacunas Atenuadas/inmunología
11.
J Immunol ; 195(5): 2461-71, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26202980

RESUMEN

Innate immune inflammatory responses are subject to complex layers of negative regulation at intestinal mucosal surfaces. Although the type I IFN system is critical for amplifying antiviral immunity, it has been shown to play a homeostatic role in some models of autoimmune inflammation. Type I IFN is triggered in the gut by select bacterial pathogens, but whether and how the type I IFN might regulate innate immunity in the intestinal environment have not been investigated in the context of Salmonella enterica serovar Typhimurium (ST). ST infection of human or murine macrophages reveals that IFN-ß selectively restricts the transcriptional responses mediated by both the TLRs and the NOD-like receptors. Specifically, IFN-ß potently represses ST-dependent innate induction of IL-1 family cytokines and neutrophil chemokines. This IFN-ß-mediated transcriptional repression was independent of the effects of IFN-ß on ST-induced macrophage cell death, but significantly dependent on IL-10 regulation. We further evaluated ST pathogenesis in vivo following oral inoculation of mice lacking IFN-ß. We show that IFN-ß(-/-) mice exhibit greater resistance to oral ST infection and a slower spread of ST to distal sterile sites. This work provides mechanistic insight into the relationship between ST and type I IFN, and demonstrates an additional mechanism by which IFN-ß may promote spread of enteric pathogens.


Asunto(s)
Expresión Génica/inmunología , Inmunidad Innata/inmunología , Interferón beta/inmunología , Macrófagos/inmunología , Salmonella typhimurium/inmunología , Animales , Western Blotting , Línea Celular , Células Cultivadas , Quimiocinas/genética , Quimiocinas/inmunología , Quimiocinas/metabolismo , Citocinas/genética , Citocinas/inmunología , Citocinas/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Expresión Génica/efectos de los fármacos , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/inmunología , Humanos , Íleon/citología , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/genética , Interferón beta/genética , Interferón beta/farmacología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Salmonelosis Animal/genética , Salmonelosis Animal/inmunología , Salmonelosis Animal/microbiología , Salmonella typhimurium/fisiología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo
13.
Gut Microbes ; 16(1): 2323232, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38439546

RESUMEN

Two-thirds of small-bowel transplantation (SBT) recipients develop bacteremia, with the majority of infections occurring within 3 months post-transplant. Sepsis-related mortality occurs in 31% of patients and is commonly caused by bacteria of gut origin, which are thought to translocate across the implanted organ. Serial post-transplant surveillance endoscopies provide an opportunity to study whether the composition of the ileal and colonic microbiota can predict the emergence as well as the pathogen of subsequent clinical infections in the SBT patient population. Five participants serially underwent aspiration of ileal and colonic bowel effluents at transplantation and during follow-up endoscopy either until death or for up to 3 months post-SBT. We performed whole-metagenome sequencing (WMS) of 40 bowel effluent samples and compared the results with clinical infection episodes. Microbiome composition was concordant between participants and timepoint-matched ileal and colonic samples. Four out of five (4/5) participants had clinically significant infections thought to be of gut origin. Bacterial translocation from the gut was observed in 3/5 patients with bacterial infectious etiologies. In all three cases, the pathogens had demonstrably colonized the gut between 1-10 days prior to invasive clinical infection. Recipients with better outcomes received donor grafts with higher alpha diversity. There was an increase in the number of antimicrobial resistance genes associated with longer hospital stay for all participants. This metagenomic study provides preliminary evidence to support the pathogen translocation hypothesis of gut-origin sepsis in the SBT cohort. Ileal and colonic microbiome compositions were concordant; therefore, fecal metagenomic analysis could be a useful surveillance tool for impeding infection with specific gut-residing pathogens.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Sepsis , Humanos , Microbioma Gastrointestinal/genética , Metagenoma , Estudios Prospectivos
14.
Lancet Glob Health ; 12(4): e599-e610, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38485427

RESUMEN

BACKGROUND: Typhoid Fever remains a major cause of morbidity and mortality in low-income settings. The Severe Typhoid in Africa programme was designed to address regional gaps in typhoid burden data and identify populations eligible for interventions using novel typhoid conjugate vaccines. METHODS: A hybrid design, hospital-based prospective surveillance with population-based health-care utilisation surveys, was implemented in six countries in sub-Saharan Africa. Patients presenting with fever (≥37·5°C axillary or ≥38·0°C tympanic) or reporting fever for three consecutive days within the previous 7 days were invited to participate. Typhoid fever was ascertained by culture of blood collected upon enrolment. Disease incidence at the population level was estimated using a Bayesian mixture model. FINDINGS: 27 866 (33·8%) of 82 491 participants who met inclusion criteria were recruited. Blood cultures were performed for 27 544 (98·8%) of enrolled participants. Clinically significant organisms were detected in 2136 (7·7%) of these cultures, and 346 (16·2%) Salmonella enterica serovar Typhi were isolated. The overall adjusted incidence per 100 000 person-years of observation was highest in Kavuaya and Nkandu 1, Democratic Republic of the Congo (315, 95% credible interval 254-390). Overall, 46 (16·4%) of 280 tested isolates showed ciprofloxacin non-susceptibility. INTERPRETATION: High disease incidence (ie, >100 per 100 000 person-years of observation) recorded in four countries, the prevalence of typhoid hospitalisations and complicated disease, and the threat of resistant typhoid strains strengthen the need for rapid dispatch and implementation of effective typhoid conjugate vaccines along with measures designed to improve clean water, sanitation, and hygiene practices. FUNDING: The Bill & Melinda Gates Foundation.


Asunto(s)
Fiebre Tifoidea , Vacunas , Humanos , Fiebre Tifoidea/epidemiología , Fiebre Tifoidea/prevención & control , Ghana , Madagascar , Burkina Faso/epidemiología , Etiopía , Incidencia , Nigeria , Estudios Prospectivos , Teorema de Bayes , República Democrática del Congo
15.
Infect Immun ; 81(11): 4232-43, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24002063

RESUMEN

Atypical enteropathogenic Escherichia coli (aEPEC) causes endemic diarrhea, diarrheal outbreaks, and persistent diarrhea in humans, but the mechanism by which aEPEC causes disease is incompletely understood. Virulence regulators and their associated regulons, which often include adhesins, play key roles in the expression of virulence factors in enteric pathogenic bacteria. In this study we identified a transcriptional regulator, RalR, in the rabbit-specific aEPEC strain, E22 (O103:H2) and examined its involvement in the regulation of virulence. Microarray analysis and quantitative real-time reverse transcription-PCR demonstrated that RalR enhances the expression of a number of genes encoding virulence-associated factors, including the Ral fimbria, the Aap dispersin, and its associated transport system, and downregulates several housekeeping genes, including fliC. These observations were confirmed by proteomic analysis of secreted and heat-extracted surface-associated proteins and by adherence and motility assays. To investigate the mechanism of RalR-mediated activation, we focused on its most highly upregulated target operons, ralCDEFGHI and aap. By using primer extension, electrophoretic mobility shift assay, and mutational analysis, we identified the promoter and operator sequences for these two operons. By employing promoter-lacZ reporter systems, we demonstrated that RalR activates the expression of its target genes by binding to one or more 8-bp palindromic sequences (with the consensus of TGTGCACA) located immediately upstream of the promoter core regions. Importantly, we also demonstrated that RalR is essential for virulence since infection of rabbits with E22 carrying a knockout mutation in the ralR gene completely abolished its ability to cause disease.


Asunto(s)
Escherichia coli Enteropatógena/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/metabolismo , Factores de Virulencia/metabolismo , Animales , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Infecciones por Escherichia coli/veterinaria , Proteínas de Escherichia coli/genética , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Análisis por Micromatrices , Regiones Promotoras Genéticas , Proteoma/análisis , Conejos , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/genética , Virulencia
16.
JAC Antimicrob Resist ; 5(4): dlad090, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37484028

RESUMEN

Objectives: We investigated longitudinally Vietnamese small-scale chicken flocks in order to characterize changes in antimicrobial resistance gene (ARG) content over their life cycle, and the impact of antimicrobial use (AMU) on an intervention consisting of veterinary advice provision. Methods: AMU data and faecal samples were collected from 83 flocks (25 farms) at day-old, mid- and late-production (∼4 month cycle). Using high-throughput real-time PCR, samples were investigated for 94 ARGs. ARG copies were related to 16S rRNA and ng of DNA (ngDNA). Impact of AMU and ARGs in day-olds was investigated by mixed-effects models. Results: Flocks received a mean (standard error, SE) animal daily dose (ADD) of 736.7 (83.0) and 52.1 (9.9) kg in early and late production, respectively. Overall, ARGs/16S rRNA increased from day-old (mean 1.47; SE 0.10) to mid-production (1.61; SE 0.16), further decreasing in end-production (1.60; SE 0.1) (all P > 0.05). In mid-production, ARGs/16S rRNA increased for aminoglycosides, phenicols, sulphonamides and tetracyclines, decreasing for polymyxins ß-lactams and genes that confer resistance to mutiple classes (multi-drug resistance) (MDR). At end-production, aminoglycoside resistance decreased and polymyxin and quinolone resistance increased (all P < 0.05). Results in relation to ngDNA gave contradictory results. Neither AMU nor ARGs in day-olds had an impact on subsequent ARG abundance. The intervention resulted in 74.2% AMU reduction; its impact on ARGs depended on whether ARGs/ngDNA (+14.8%) or ARGs/16S rRNA metrics (-10.7%) (P > 0.05) were computed. Conclusions: The flocks' environment (contaminated water, feed and residual contamination) is likely to play a more important role in transmission of ARGs to flocks than previously thought. Results highlight intriguing differences in the quantification of ARGs depending on the metric chosen.

17.
Infect Immun ; 80(6): 2042-52, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22451516

RESUMEN

Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrhea in infants in developing countries. We have identified a functional type II secretion system (T2SS) in EPEC that is homologous to the pathway responsible for the secretion of heat-labile enterotoxin by enterotoxigenic E. coli. The wild-type EPEC T2SS was able to secrete a heat-labile enterotoxin reporter, but an isogenic T2SS mutant could not. We showed that the major substrate of the T2SS in EPEC is SslE, an outer membrane lipoprotein (formerly known as YghJ), and that a functional T2SS is essential for biofilm formation by EPEC. T2SS and SslE mutants were arrested at the microcolony stage of biofilm formation, suggesting that the T2SS is involved in the development of mature biofilms and that SslE is a dominant effector of biofilm development. Moreover, the T2SS was required for virulence, as infection of rabbits with a rabbit-specific EPEC strain carrying a mutation in either the T2SS or SslE resulted in significantly reduced intestinal colonization and milder disease.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Escherichia coli Enteropatógena/fisiología , Escherichia coli Enteropatógena/patogenicidad , Proteínas de Escherichia coli/metabolismo , Factores de Virulencia/metabolismo , Animales , Membrana Celular , Escherichia coli Enteropatógena/citología , Escherichia coli Enteropatógena/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Mutación , Conejos , Especificidad por Sustrato , Virulencia , Factores de Virulencia/genética
18.
Genome Med ; 14(1): 15, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35172877

RESUMEN

Antimicrobial resistance (AMR) is a major global public health threat, which has been largely driven by the excessive use of antimicrobials. Control measures are urgently needed to slow the trajectory of AMR but are hampered by an incomplete understanding of the interplay between pathogens, AMR encoding genes, and mobile genetic elements at a microbial level. These factors, combined with the human, animal, and environmental interactions that underlie AMR dissemination at a population level, make for a highly complex landscape. Whole-genome sequencing (WGS) and, more recently, metagenomic analyses have greatly enhanced our understanding of these processes, and these approaches are informing mitigation strategies for how we better understand and control AMR. This review explores how WGS techniques have advanced global, national, and local AMR surveillance, and how this improved understanding is being applied to inform solutions, such as novel diagnostic methods that allow antimicrobial use to be optimised and vaccination strategies for better controlling AMR. We highlight some future opportunities for AMR control informed by genomic sequencing, along with the remaining challenges that must be overcome to fully realise the potential of WGS approaches for international AMR control.


Asunto(s)
Antibacterianos , Antiinfecciosos , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana/genética , Genómica/métodos , Humanos , Salud Pública
19.
Microbiol Spectr ; 10(3): e0024922, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35639002

RESUMEN

In countries where the incidence of typhoid fever is high, fecal material from short-term carriers of Salmonella Typhi contaminates inadequately treated water supplies. As treated water supplies and improved sanitation become available, chronic (mainly gallbladder) carriers of S. Typhi become important. The objective of this study was to develop a method for detection of S. Typhi in bile by quantitative real-time PCR (qPCR) in patients undergoing cholecystectomy. We evaluated sensitivity and specificity of probesets that target oriC, viaB, fliC-d, STY0201, and stoD. We optimized DNA extraction from bile and compared the sensitivity of culture and our qPCR method to detect S. Typhi in bile samples containing various cephalosporins. With the use of an optimized DNA extraction technique, our limit of detection of S. Typhi in spiked human bile samples was 7.4 × 102 CFU/mL. We observed that S. Typhi could be detected by qPCR in samples containing cefazolin, cefotaxime, or ceftriaxone whereas culture could only detect Typhi in samples containing cefazolin but not cefotaxime or ceftriaxone. Our qPCR detection method for S. Typhi in bile should be preferred in areas where antibiotic usage is common. IMPORTANCE New Salmonella Typhi conjugate vaccines have been deployed, which will potentially lead to a fall in incidence rates of typhoid fever in endemic areas. Identification of chronic carriers of S. Typhi will be important as these individuals can be a potential source of transmission to susceptible persons. To address this public health concern, we have developed a novel method to detect S. Typhi in bile using real-time PCR. Our method can be used to identify carriers of S. Typhi among patients undergoing cholecystectomy (gallbladder removal surgery). The sensitivity of our molecular-based assay was superior to culture when performed in the presence of antibiotics commonly used during surgery. Our methodology will complement efforts to eliminate typhoid disease.


Asunto(s)
Salmonella typhi , Fiebre Tifoidea , Bilis , Cefazolina , Ceftriaxona , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Salmonella typhi/genética , Fiebre Tifoidea/diagnóstico
20.
mBio ; 13(3): e0015722, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35536001

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea in children in low- and middle-income countries (LMICs). However, large-scale pathogen burden studies in children have identified ETEC in the guts of both symptomatic patients and controls. The factors that influence this balance are poorly understood, but it is postulated that the gut microbiome may play a role in either resistance or progression to disease. In this study, we profiled the microbiomes of children and adults from Bangladesh who were asymptomatically or symptomatically infected with ETEC. Symptomatic patients had significantly higher numbers of sequenced reads mapping to both E. coli and two ETEC toxins, suggesting higher bacterial burden. They were also significantly more likely to be coinfected with enteroaggregative E. coli (EAEC) and had higher proportions of other Gammaproteobacteria, including Klebsiella, Salmonella, and Haemophilus. Colonization with ETEC was also associated with increased prevalence of antimicrobial resistance (AMR) genes, most notably those of the ß-lactamase class. Taxonomic profiles were distinctly different between all groups in both species richness and composition, although the direction of these changes was different in adults and children. As seen previously, children with high E. coli burdens also had higher proportions of Streptococcus spp., while healthy children were more heavily colonized by Bifidobacterium spp. Our study provides insight into the microbiome changes that occur upon infection with ETEC in an endemic setting and provides rationale for future studies investigating how the microbiome may protect or predispose individuals to symptomatic infections with gastrointestinal pathogens. IMPORTANCE Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea in children in low- and middle-income countries. However, these bacteria are often identified in both patients and healthy controls. We do not yet understand why only some people get sick, but it has been suggested that the gut microbiome might play a role. In this study, we used metagenomic sequencing to profile the gut microbiomes of individuals in Bangladesh, with or without a symptomatic ETEC infection. In general, individuals with high levels of ETEC also harbored other pathogenic E. coli strains, higher proportions of Gammaproteobacteria such as Salmonella and Klebsiella, and a higher burden of antimicrobial resistance genes in their guts. Healthy children, in contrast, had higher levels of bifidobacteria. These data confirm that the composition of the gut microbiome is different between symptomatic and asymptomatic people and provides important preliminary information on the impact of the gut microbiome in intestinal infections.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Microbioma Gastrointestinal , Microbiota , Adulto , Bacterias/genética , Niño , Diarrea/microbiología , Escherichia coli Enterotoxigénica/genética , Infecciones por Escherichia coli/microbiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA