Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nature ; 502(7469): 76-9, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-24067608

RESUMEN

The existence of bound states of elementary spin waves (magnons) in one-dimensional quantum magnets was predicted almost 80 years ago. Identifying signatures of magnon bound states has so far remained the subject of intense theoretical research, and their detection has proved challenging for experiments. Ultracold atoms offer an ideal setting in which to find such bound states by tracking the spin dynamics with single-spin and single-site resolution following a local excitation. Here we use in situ correlation measurements to observe two-magnon bound states directly in a one-dimensional Heisenberg spin chain comprising ultracold bosonic atoms in an optical lattice. We observe the quantum dynamics of free and bound magnon states through time-resolved measurements of two spin impurities. The increased effective mass of the compound magnon state results in slower spin dynamics as compared to single-magnon excitations. We also determine the decay time of bound magnons, which is probably limited by scattering on thermal fluctuations in the system. Our results provide a new way of studying fundamental properties of quantum magnets and, more generally, properties of interacting impurities in quantum many-body systems.

2.
Nature ; 491(7422): 87-91, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23128229

RESUMEN

The ability to control and tune interactions in ultracold atomic gases has paved the way for the realization of new phases of matter. So far, experiments have achieved a high degree of control over short-range interactions, but the realization of long-range interactions has become a central focus of research because it would open up a new realm of many-body physics. Rydberg atoms are highly suited to this goal because the van der Waals forces between them are many orders of magnitude larger than those between ground-state atoms. Consequently, mere laser excitation of ultracold gases can cause strongly correlated many-body states to emerge directly when atoms are transferred to Rydberg states. A key example is a quantum crystal composed of coherent superpositions of different, spatially ordered configurations of collective excitations. Here we use high-resolution, in situ Rydberg atom imaging to measure directly strong correlations in a laser-excited, two-dimensional atomic Mott insulator. The observations reveal the emergence of spatially ordered excitation patterns with random orientation, but well-defined geometry, in the high-density components of the prepared many-body state. Together with a time-resolved analysis, this supports the description of the system in terms of a correlated quantum state of collective excitations delocalized throughout the gas. Our experiment demonstrates the potential of Rydberg gases to realize exotic phases of matter, thereby laying the basis for quantum simulations of quantum magnets with long-range interactions.

3.
Strahlenther Onkol ; 192(2): 118-26, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26614393

RESUMEN

BACKGROUND AND PURPOSE: Intensity-modulated particle therapy (IMPT) for tumors showing interfraction motion is a topic of current research. The purpose of this work is to compare three treatment strategies for IMPT to determine potential advantages and disadvantages of ion prostate cancer therapy. MATERIALS AND METHODS: Simulations for three treatment strategies, conventional one-plan radiotherapy (ConvRT), image-guided radiotherapy (IGRT), and online adaptive radiotherapy (ART) were performed employing a dataset of 10 prostate cancer patients with six CT scans taken at one week intervals. The simulation results, using a geometric margin concept (7-2 mm) as well as patient-specific internal target volume definitions for IMPT were analyzed by target coverage and exposure of critical structures on single fraction dose distributions. RESULTS: All strategies led to clinically acceptable target coverage in patients exhibiting small prostate motion (mean displacement <4 mm), but IGRT and especially ART led to significant sparing of the rectum. In 20% of the patients, prostate motion exceeded 4 mm causing insufficient target coverage for ConvRT (V95mean = 0.86, range 0.63-0.99) and IGRT (V95mean = 0.91, range 0.68-1.00), while ART maintained acceptable target coverage. CONCLUSION: IMPT of prostate cancer demands consideration of rectal sparing and adaptive treatment replanning for patients exhibiting large prostate motion.


Asunto(s)
Fraccionamiento de la Dosis de Radiación , Radioterapia de Iones Pesados/métodos , Movimiento (Física) , Neoplasias de la Próstata/radioterapia , Monitoreo de Radiación/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Errores de Configuración en Radioterapia , Radioterapia Guiada por Imagen/métodos , Radioterapia de Intensidad Modulada/métodos , Tomografía Computarizada por Rayos X/métodos , Simulación por Computador , Humanos , Masculino , Órganos en Riesgo
4.
Phys Rev Lett ; 115(3): 035302, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26230800

RESUMEN

Entanglement is an essential property of quantum many-body systems. However, its local detection is challenging and was so far limited to spin degrees of freedom in ion chains. Here we measure entanglement between the spins of atoms located on two lattice sites in a one-dimensional Bose-Hubbard chain which features both local spin- and particle-number fluctuations. Starting with an initially localized spin impurity, we observe an outwards propagating entanglement wave and show quantitatively how entanglement in the spin sector rapidly decreases with increasing particle-number fluctuations in the chain.

5.
Proc Natl Acad Sci U S A ; 109(25): 9770-4, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22665771

RESUMEN

Engineering quantum particle systems, such as quantum simulators and quantum cellular automata, relies on full coherent control of quantum paths at the single particle level. Here we present an atom interferometer operating with single trapped atoms, where single particle wave packets are controlled through spin-dependent potentials. The interferometer is constructed from a sequence of discrete operations based on a set of elementary building blocks, which permit composing arbitrary interferometer geometries in a digital manner. We use this modularity to devise a space-time analogue of the well-known spin echo technique, yielding insight into decoherence mechanisms. We also demonstrate mesoscopic delocalization of single atoms with a separation-to-localization ratio exceeding 500; this result suggests their utilization beyond quantum logic applications as nano-resolution quantum probes in precision measurements, being able to measure potential gradients with precision 5 x 10(-4) in units of gravitational acceleration g.

6.
Phys Rev Lett ; 113(14): 147205, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25325657

RESUMEN

We study experimentally the far-from-equilibrium dynamics in ferromagnetic Heisenberg quantum magnets realized with ultracold atoms in an optical lattice. After controlled imprinting of a spin spiral pattern with an adjustable wave vector, we measure the decay of the initial spin correlations through single-site resolved detection. On the experimentally accessible time scale of several exchange times, we find a profound dependence of the decay rate on the wave vector. In one-dimensional systems, we observe diffusionlike spin transport with a dimensionless diffusion coefficient of 0.22(1). We show how this behavior emerges from the microscopic properties of the closed quantum system. In contrast to the one-dimensional case, our transport measurements for two-dimensional Heisenberg systems indicate anomalous superdiffusion.

7.
Int J Radiat Oncol Biol Phys ; 111(3): 705-715, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34217788

RESUMEN

PURPOSE: Our purpose was to investigate the effect of automated knowledge-based planning (KBP) on real-world clinical workflow efficiency, assess whether manual refinement of KBP plans improves plan quality across multiple disease sites, and develop a data-driven method to periodically improve KBP automated planning routines. METHODS AND MATERIALS: Using clinical knowledge-based automated planning routines for prostate, prostatic fossa, head and neck, and hypofractionated lung disease sites in a commercial KBP solution, workflow efficiency was compared in terms of planning time in a pre-KBP (n = 145 plans) and post-KBP (n = 503) patient cohort. Post-KBP, planning was initialized with KBP (KBP-only) and subsequently manually refined (KBP +human). Differences in planning time were tested for significance using a 2-tailed Mann-Whitney U test (P < .05, null hypothesis: planning time unchanged). Post-refinement plan quality was assessed using site-specific dosimetric parameters of the original KBP-only plan versus KBP +human; 2-tailed paired t test quantified statistical significance (Bonferroni-corrected P < .05, null hypothesis: no dosimetric difference after refinement). If KBP +human significantly improved plans across the cohort, optimization objectives were changed to create an updated KBP routine (KBP'). Patients were replanned with KBP' and plan quality was compared with KBP +human as described previously. RESULTS: KBP significantly reduced planning time in all disease sites: prostate (median: 7.6 hrs â†’ 2.1 hrs; P < .001), prostatic fossa (11.1 hrs â†’ 3.7 hrs; P = .001), lung (9.9 hrs â†’ 2.0 hrs; P < .001), and head and neck (12.9 hrs â†’ 3.5 hrs; P <.001). In prostate, prostatic fossa, and lung disease sites, organ-at-risk dose changes in KBP +human versus KBP-only were minimal (<1% prescription dose). In head and neck, KBP +human did achieve clinically relevant dose reductions in some parameters. The head and neck routine was updated (KBP'HN) to incorporate dose improvements from manual refinement. The only significant dosimetric differences to KBP +human after replanning with KBP'HN were in favor of the new routine. CONCLUSIONS: KBP increased clinical efficiency by significantly reducing planning time. On average, human refinement offered minimal dose improvements over KBP-only plans. In the single disease site where KBP +human was superior to KBP-only, differences were eliminated by adjusting optimization parameters in a revised KBP routine.


Asunto(s)
Enfermedades Pulmonares , Radioterapia de Intensidad Modulada , Automatización , Humanos , Bases del Conocimiento , Masculino , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Recursos Humanos
8.
Pract Radiat Oncol ; 10(2): 112-124, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31812828

RESUMEN

PURPOSE: To establish a framework for the evaluation of knowledge-based planning routines that empowers new adopters to select systems that best match their clinical priorities. We demonstrate the power of this framework using 4 publicly available prostate routines. METHODS AND MATERIALS: Four publicly available prostate routines (CCMB, Miami, UCSD, WUSTL) were automatically applied across a 25-patient cohort using Eclipse scripting and a PTV prescription of V81 Gy = 95%. The institutions' routines differed in contouring guidelines for planning target volume (PTV) and organs at risk, beam arrangements, and optimization parameters. Model-estimated dose-volume histograms (DVHs) and deliverable postoptimization DVHs were extracted from plans to calculate average DVHs for each routine. Each routine's average calculated DVH was subtracted from the average DVH for all plans and from the model's average predicted DVH for comparison. DVH metrics for PTV (DMAX, D1%, D99%, DMIN), Rectum (DMAX, V70, V60, V40), Bladder (V75, V40), Femur (DMAX), and PenileBulb (DMEAN) were compared with the average using 2-sided paired t tests (Bonferroni-corrected P < .05). To control for contouring effects, the full analysis was conducted for 2 PTV margin schemas: 5 mm uniform and 3 mm or 7 mm posterior/else. RESULTS: Calculated plans generally aligned with their routine's DVH estimations, except CCMB organ-at-risk Dmaxes. Dosimetric parameter differences were not significant, with the exception of PTV DMAX (Miami = 111.1% [P < .001]), PTV D99% (Miami = 97.4% [P = .05]; UCSD = 97.4% [P = .03]; CCMB = 98.5% [P = .001]), Rectum V40 (Miami = 19.1% [P < .001]; UCSD = 22.7% [P = .003]; CCMB = 53.5% [P < .001]), and Femur DMAX (WUSTL = 48.6% [P = .001.]; CCMB = 37.9% [P < .001]). Overall, UCSD and Miami had lower rectum doses, and CCMB and WUSTL had higher PTV homogeneity. Conclusions were unchanged with different PTV margin schemas. CONCLUSIONS: Using publicly available knowledge-based planning routines spares clinicians substantial effort in developing new models. Our results allow clinicians to select the prostate routine that matches their clinical priorities, and our methodology sets the precedent for comparing routines for different treatment sites.


Asunto(s)
Neoplasias de la Próstata/epidemiología , Estudios de Cohortes , Humanos , Bases del Conocimiento , Masculino
9.
Int J Radiat Oncol Biol Phys ; 106(2): 430-439, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31678227

RESUMEN

PURPOSE: To evaluate whether automated knowledge-based planning (KBP) (a) is noninferior to human-driven planning across multiple disease sites and (b) systematically affects dosimetric plan quality and variability. METHODS AND MATERIALS: Clinical KBP automated planning routines were developed for prostate, prostatic fossa, hypofractionated lung, and head and neck. Clinical implementation consisted of independent generation of human-generated and KBP plans (145 cases across all sites), followed by blinded plan selection. Reviewing physicians were prompted to select a single plan; when plan equivalence was volunteered, this scored as KBP selection. Plan selection analysis used a noninferiority framework testing the hypothesis that KBP is not worse than human-driven planning (threshold: lower 95% confidence interval [CI] > 0.45 = noninferiority; > 0.5 = superiority). Target and organ-at-risk metrics were compared by dose differencing: ΔDx = Dx, human-Dx, KBP (2-tailed paired t test, Bonferroni-corrected P < .05 significance threshold). To evaluate the aggregated effect of KBP on planning performance, we examined post-KBP dosimetric parameters against 183 plans generated just before KBP implementation (2-tailed unpaired t test, Bonferroni-corrected P < .05). RESULTS: Across all disease sites, the KBP success rate (physician preferred + equivalent) was noninferior compared with human-driven planning (83 of 145 = 57.2%; range, 49.2%-65.3%) but did not cross the threshold for superiority. The KBP success rate in respective disease sites was superior with head and neck ([22 + 2]/36 = 66.7%; 95% CI, 51%-82%) and noninferior for lung stereotactic body radiation therapy ([21 + 2]/36 = 63.9%; 95% CI, 48%-80%) but did not meet noninferiority criteria with prostate ([16 + 3]/41 = 46.3%; 95% CI, 31%-62%) or prostatic fossa ([17 + 0]/32 = 53.1%; 95% CI, 36%-70%). Prostate, prostatic fossa, and head and neck showed significant differences in KBP-selected plans versus human-selected plans, with KBP generally exhibiting greater organ-at-risk sparing and human plans exhibiting better target homogeneity. Analysis of plan quality pre- and post-KBP showed some reductions in organ doses and quality metric variability in prostate and head and neck. CONCLUSIONS: Fully automated KBP was noninferior to human-driven plan optimization across multiple disease sites. Dosimetric analysis of treatment plans before and after KBP implementation showed a systematic shift to higher plan quality and lower variability with the introduction of KBP.


Asunto(s)
Protocolos Clínicos , Neoplasias de Cabeza y Cuello/radioterapia , Gestión del Conocimiento , Neoplasias Pulmonares/radioterapia , Neoplasias de la Próstata/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias de Cabeza y Cuello/patología , Humanos , Bases del Conocimiento , Neoplasias Pulmonares/patología , Masculino , Tratamientos Conservadores del Órgano/métodos , Órganos en Riesgo , Neoplasias de la Próstata/patología , Garantía de la Calidad de Atención de Salud , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/normas , Equipoise Terapéutico
10.
Brachytherapy ; 19(5): 624-634, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32513446

RESUMEN

PURPOSE: The purpose of this study is to explore knowledge-based organ-at-risk dose estimation for intracavitary brachytherapy planning for cervical cancer. Using established external-beam knowledge-based dose-volume histogram (DVH) estimation methods, we sought to predict bladder, rectum, and sigmoid D2cc for tandem and ovoid treatments. METHODS AND MATERIALS: A total of 136 patients with loco-regionally advanced cervical cancer treated with 456 (356:100 training:validation ratio) CT-based tandem and ovoid brachytherapy fractions were analyzed. Single fraction prescription doses were 5.5-8 Gy with dose criteria for the high-risk clinical target volume, bladder, rectum, and sigmoid. DVH estimations were obtained by subdividing training set organs-at-risk into high-risk clinical target volume boundary distance subvolumes and computing cohort-averaged differential DVHs. Full DVH estimation was then performed on the training and validation sets. Model performance was quantified by ΔD2cc = D2cc(actual)-D2cc(predicted) (mean and standard deviation). ΔD2cc between training and validation sets were compared with a Student's t test (p < 0.01 significant). Categorical variables (physician, fraction-number, total fractions, and case complexity) that might explain model variance were examined using an analysis of variance test (Bonferroni-corrected p < 0.01 threshold). RESULTS: Training set deviations were bladder ΔD2cc = -0.04 ± 0.61 Gy, rectum ΔD2cc = 0.02 ± 0.57 Gy, and sigmoid ΔD2cc = -0.05 ± 0.52 Gy. Model predictions on validation set did not statistically differ: bladder ΔD2cc = -0.02 ± 0.46 Gy (p = 0.80), rectum ΔD2cc = -0.007 ± 0.47 Gy (p = 0.53), and sigmoid ΔD2cc = -0.07 ± 0.47 Gy (p = 0.70). The only significant categorical variable was the attending physician for bladder and rectum ΔD2cc. CONCLUSION: A simple boundary distance-driven knowledge-based DVH estimation exhibited promising results in predicting critical brachytherapy dose metrics. Future work will examine the utility of these predictions for quality control and automated brachytherapy planning.


Asunto(s)
Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias del Cuello Uterino/radioterapia , Adulto , Braquiterapia/métodos , Colon Sigmoide , Femenino , Humanos , Recto , Tomografía Computarizada por Rayos X/métodos , Vejiga Urinaria
11.
Phys Med ; 57: 215-220, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30661743

RESUMEN

PURPOSE: To report on the implementation, validation and results of the first two proton therapy PBS treatments of limited amplitudes moving targets performed at our center. METHODS AND MATERIALS: A real time optical tracking system was used to monitor the patient surface during the CT scan and treatment. This system is also able to trigger the beam during the treatment. A 4DCT (10 phases) and a Free-Breathing CT (FBCT) were used for the planning. The physician used the 4DCT for ITV delineation, while planning was performed on the FBCT. The approved plan was evaluated in two ways:The largest breathing amplitude recorded during 4DCT scan was used as gating safety threshold during treatment delivery. This planning and treatment workflow was then applied for two patients affected by thoracic thymoma. RESULTS: The dosimetric evaluation of the plan showed no interplay effect. The second patient showed an overdosage to the coronary and Left Anterior Descending area in the worst case scenario but it was below the constraints. Duty Cycle together with number of beam interruptions gave information about the patient compliance to the treatment: the first patient breath is stable and within thresholds, whilst the second patient had more variations, causing multiple beam interruptions. CONCLUSION: We defined and used for two patients a protocol for the treatment of small amplitude moving targets. The planning and delivery of the treatments gave very good results in terms of coverage, OARs sparing, 4D dose evaluation of the plan and interplay effect assessment.


Asunto(s)
Fraccionamiento de la Dosis de Radiación , Movimiento , Terapia de Protones/métodos , Tomografía Computarizada Cuatridimensional , Humanos , Planificación de la Radioterapia Asistida por Computador , Respiración , Timoma/diagnóstico por imagen , Timoma/fisiopatología , Timoma/radioterapia , Neoplasias del Timo/diagnóstico por imagen , Neoplasias del Timo/fisiopatología , Neoplasias del Timo/radioterapia
12.
Med Phys ; 43(1): 308, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26745924

RESUMEN

PURPOSE: Five tissue- and water-equivalent materials (TEMs) mimicking ICRU real tissues have been formulated using a previously established stoichiometric analysis method (SAM) to be applied in charged particle therapy. The purpose of this study was an experimental verification of the TEMs-SAM against charged particle beam measurements and for different computed tomography (CT) scanners. The potential of the TEMs-SAM to be employed in the dosimetry was also investigated. METHODS: Experimental verification with three CT scanners was carried out to validate the calculated Hounsfield units (HUs) of the TEMs. Water-equivalent path lengths (WEPLs) of the TEMs for proton (106.8 MeV/u), helium (107.93 MeV/u), and carbon (200.3 MeV/u) ions were measured to be compared with the computed relative stopping powers. HU calibration curves were also generated. RESULTS: Differences between the measured HUs of the TEMs and the calculated HUs of the ICRU real tissues for all CT scanners were smaller than 4 HU except for the skeletal tissues which deviated up to 21 HU. The measured WEPLs verified the calculated WEPLs of the TEMs (maximum deviation was 0.17 mm) and were in good agreement with the calculated WEPLs of the ICRU real tissues (maximum deviation was 0.23 mm). Moreover, the relative stopping powers converted from the measured WEPLs differed less than 0.8% and 1.3% from the calculated values of the SAM and the ICRU, respectively. Regarding the relative nonelastic cross section per unit of volume for 200 MeV protons, the ICRU real tissues were generally well represented by the TEMs except for adipose which differed 3.8%. Further, the HU calibration curves yielded the mean and the standard deviation of the errors not larger than 0.5% and 1.9%, respectively. CONCLUSIONS: The results of this investigation implied the potential of the TEMs formulated using the SAM to be employed for both, beam dosimetry and HU calibration in charged particle therapy.


Asunto(s)
Materiales Biomiméticos , Radioterapia/métodos , Agua , Calibración , Tomografía Computarizada por Rayos X
13.
Science ; 352(6293): 1547-52, 2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27339981

RESUMEN

A fundamental assumption in statistical physics is that generic closed quantum many-body systems thermalize under their own dynamics. Recently, the emergence of many-body localized systems has questioned this concept and challenged our understanding of the connection between statistical physics and quantum mechanics. Here we report on the observation of a many-body localization transition between thermal and localized phases for bosons in a two-dimensional disordered optical lattice. With our single-site-resolved measurements, we track the relaxation dynamics of an initially prepared out-of-equilibrium density pattern and find strong evidence for a diverging length scale when approaching the localization transition. Our experiments represent a demonstration and in-depth characterization of many-body localization in a regime not accessible with state-of-the-art simulations on classical computers.

14.
Int J Radiat Oncol Biol Phys ; 85(2): 528-35, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22652108

RESUMEN

PURPOSE: To provide methods for quantification of uncertainties in 4-dimensional (4D) treatment during treatment planning. METHODS AND MATERIALS: Uncertainty information was generated by multiple 4D treatment simulations with varying parameters. Sampled data were analyzed using uncertainty visualization methods that have been added to common treatment plan evaluation methods (eg, dose-volume histogram and dose distribution analysis). To illustrate the potential of the introduced methods, uncertainty analysis was completed for a single lung cancer case using 3 motion mitigation techniques: gating, slice-by-slice rescanning, and breath-controlled rescanning. RESULTS: By repeating 4D dose calculations with varying parameters, we were able to show local uncertainties in dose distributions and to evaluate the stability of treatment setups. The new methods were found suitable for uncertainty evaluation in 4D treatment planning of moving tumors. Calculation time of the uncertainty base data was time consuming but contrivable overnight. CONCLUSIONS: Uncertainty analysis and visualization for 4D treatment planning provide an important tool in the decision process for an optimal treatment approach.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Neoplasias Pulmonares/radioterapia , Movimiento , Planificación de la Radioterapia Asistida por Computador/métodos , Incertidumbre , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Estudios de Factibilidad , Tomografía Computarizada Cuatridimensional , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Efectividad Biológica Relativa , Respiración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA