Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Pharmaceutics ; 14(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35056970

RESUMEN

In this study, we developed a novel solid lipid nanoparticle (SLN) formulation for drug delivery of small hydrophilic cargos to the retina. The new formulation, based on a gel core and composite shell, allowed up to two-fold increase in the encapsulation efficiency. The type of hydrophobic polyester used in the composite shell mixture affected the particle surface charge, colloidal stability, and cell internalization profile. We validated SLNs as a drug delivery system by performing the encapsulation of a hydrophilic neuroprotective cyclic guanosine monophosphate analog, previously demonstrated to hold retinoprotective properties, and the best formulation resulted in particles with a size of ±250 nm, anionic charge > -20 mV, and an encapsulation efficiency of ±60%, criteria that are suitable for retinal delivery. In vitro studies using the ARPE-19 and 661W retinal cell lines revealed the relatively low toxicity of SLNs, even when a high particle concentration was used. More importantly, SLN could be taken up by the cells and the release of the hydrophilic cargo in the cytoplasm was visually demonstrated. These findings suggest that the newly developed SLN with a gel core and composite polymer/lipid shell holds all the characteristics suitable for the drug delivery of small hydrophilic active molecules into retinal cells.

2.
Materials (Basel) ; 13(14)2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664278

RESUMEN

The treatment of osteochondral defects remains a challenge. Four scaffolds were produced using Food and Drug Administration (FDA)-approved polymers to investigate their therapeutic potential for the regeneration of the osteochondral unit. Polycaprolactone (PCL) and poly(vinyl-pyrrolidone) (PVP) scaffolds were made by electrohydrodynamic techniques. Hydroxyapatite (HAp) and/or sodium hyaluronate (HA) can be then loaded to PCL nanofibers and/or PVP particles. The purpose of adding hydroxyapatite and sodium hyaluronate into PCL/PVP scaffolds is to increase the regenerative ability for subchondral bone and joint cartilage, respectively. Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) were seeded on these biomaterials. The biocompatibility of these biomaterials in vitro and in vivo, as well as their potential to support MSC differentiation under specific chondrogenic or osteogenic conditions, were evaluated. We show here that hBM-MSCs could proliferate and differentiate both in vitro and in vivo on these biomaterials. In addition, the PCL-HAp could effectively increase the mineralization and induce the differentiation of MSCs into osteoblasts in an osteogenic condition. These results indicate that PCL-HAp biomaterials combined with MSCs could be a beneficial candidate for subchondral bone regeneration.

3.
Drug Discov Today ; 24(8): 1637-1643, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30877076

RESUMEN

The photoreceptors of the retina are afflicted by diseases that still often lack satisfactory treatment options. Although suitable drugs might be available in some cases, the delivery of these compounds into the eye and across the blood-retinal barrier remains a significant challenge for therapy development. Here, we review the routes of drug administration to the retina and highlight different options for drug delivery to the photoreceptor cells.


Asunto(s)
Preparaciones Farmacéuticas/administración & dosificación , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Retina/efectos de los fármacos , Animales , Sistemas de Liberación de Medicamentos/métodos , Humanos
4.
ACS Appl Mater Interfaces ; 10(22): 19197-19207, 2018 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-29767998

RESUMEN

The large-scale continuous production of niosomes remains challenging. The inherent drawbacks of batch processes such as large particle polydispersity and reduced batch-to-batch reproducibility are here overcome by using commercially available microfluidic reactors. Compared to the traditional batch-based film hydration method, herein, we demonstrate that it is possible to carry out the homogeneous, large-scale (up to 120 mg/min) production of niosomes using two different synthesis techniques (the thin film hydration method and the emulsification technique). Niosomes particle size can be controlled depending on the need by varying the synthesis temperature. The high cytocompatibility of the resulting niosomes was also demonstrated in this work on three different somatic cell lines. For the first time, the structure of the niosome multilamellar shell was also elucidated using high-resolution transmission electron microscopy (HR-STEM) as well as their colloidal stability over time (6 weeks) under different storage conditions. The morphology of cryo-protected or as-made niosomes was also evaluated by HR-STEM after freeze-drying. Finally, the dual ability of those synthetic, nonionic, surfactant-based vesicles to carry both hydrophilic and hydrophobic molecules was also here demonstrated by using laser scanning confocal microscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA