RESUMEN
BACKGROUND: The ADAMTS7 locus was genome-wide significantly associated with coronary artery disease. Lack of the ECM (extracellular matrix) protease ADAMTS-7 (A disintegrin and metalloproteinase-7) was shown to reduce atherosclerotic plaque formation. Here, we sought to identify molecular mechanisms and downstream targets of ADAMTS-7 mediating the risk of atherosclerosis. METHODS: Targets of ADAMTS-7 were identified by high-resolution mass spectrometry of atherosclerotic plaques from Apoe-/- and Apoe-/-Adamts7-/- mice. ECM proteins were identified using solubility profiling. Putative targets were validated using immunofluorescence, in vitro degradation assays, coimmunoprecipitation, and Förster resonance energy transfer-based protein-protein interaction assays. ADAMTS7 expression was measured in fibrous caps of human carotid artery plaques. RESULTS: In humans, ADAMTS7 expression was higher in caps of unstable as compared to stable carotid plaques. Compared to Apoe-/- mice, atherosclerotic aortas of Apoe-/- mice lacking Adamts-7 (Apoe-/-Adamts7-/-) contained higher protein levels of Timp-1 (tissue inhibitor of metalloprotease-1). In coimmunoprecipitation experiments, the catalytic domain of ADAMTS-7 bound to TIMP-1, which was degraded in the presence of ADAMTS-7 in vitro. ADAMTS-7 reduced the inhibitory capacity of TIMP-1 at its canonical target MMP-9 (matrix metalloprotease-9). As a downstream mechanism, we investigated collagen content in plaques of Apoe-/- and Apoe-/-Adamts7-/- mice after a Western diet. Picrosirius red staining of the aortic root revealed less collagen as a readout of higher MMP-9 activity in Apoe-/- as compared to Apoe-/- Adamts7-/- mice. To facilitate high-throughput screening for ADAMTS-7 inhibitors with the aim of decreasing TIMP-1 degradation, we designed a Förster resonance energy transfer-based assay targeting the ADAMTS-7 catalytic site. CONCLUSIONS: ADAMTS-7, which is induced in unstable atherosclerotic plaques, decreases TIMP-1 stability reducing its inhibitory effect on MMP-9, which is known to promote collagen degradation and is likewise associated with coronary artery disease. Disrupting the interaction of ADAMTS-7 and TIMP-1 might be a strategy to increase collagen content and plaque stability for the reduction of atherosclerosis-related events.
Asunto(s)
Proteína ADAMTS7 , Aterosclerosis , Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Inhibidor Tisular de Metaloproteinasa-1 , Animales , Humanos , Ratones , Proteína ADAMTS7/genética , Aterosclerosis/genética , Colágeno/metabolismo , Enfermedad de la Arteria Coronaria/genética , Metaloproteinasa 9 de la Matriz , Placa Aterosclerótica/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Ratones Noqueados para ApoERESUMEN
AIMS: Mental stress substantially contributes to the initiation and progression of human disease, including cardiovascular conditions. We aim to investigate the underlying mechanisms of these contributions since they remain largely unclear. METHODS AND RESULTS: Here, we show in humans and mice that leucocytes deplete rapidly from the blood after a single episode of acute mental stress. Using cell-tracking experiments in animal models of acute mental stress, we found that stress exposure leads to prompt uptake of inflammatory leucocytes from the blood to distinct tissues including heart, lung, skin, and, if present, atherosclerotic plaques. Mechanistically, we found that acute stress enhances leucocyte influx into mouse atherosclerotic plaques by modulating endothelial cells. Specifically, acute stress increases adhesion molecule expression and chemokine release through locally derived norepinephrine. Either chemical or surgical disruption of norepinephrine signalling diminished stress-induced leucocyte migration into mouse atherosclerotic plaques. CONCLUSION: Our data show that acute mental stress rapidly amplifies inflammatory leucocyte expansion inside mouse atherosclerotic lesions and promotes plaque vulnerability.
Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Modelos Animales de Enfermedad , Células Endoteliales , Inflamación , Ratones , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
A missense variant of the sushi, von Willebrand factor type A, EGF and pentraxin domain containing protein 1 (SVEP1) is genome-wide significantly associated with coronary artery disease. The mechanisms how SVEP1 impacts atherosclerosis are not known. We found endothelial cells (EC) and vascular smooth muscle cells to represent the major cellular source of SVEP1 in plaques. Plaques were larger in atherosclerosis-prone Svep1 haploinsufficient (ApoE-/-Svep1+/-) compared to Svep1 wild-type mice (ApoE-/-Svep1+/+) and ApoE-/-Svep1+/- mice displayed elevated plaque neutrophil, Ly6Chigh monocyte, and macrophage numbers. We assessed how leukocytes accumulated more inside plaques in ApoE-/-Svep1+/- mice and found enhanced leukocyte recruitment from blood into plaques. In vitro, we examined how SVEP1 deficiency promotes leukocyte recruitment and found elevated expression of the leukocyte attractant chemokine (C-X-C motif) ligand 1 (CXCL1) in EC after incubation with missense compared to wild-type SVEP1. Increasing wild-type SVEP1 levels silenced endothelial CXCL1 release. In line, plasma Cxcl1 levels were elevated in ApoE-/-Svep1+/- mice. Our studies reveal an atheroprotective role of SVEP1. Deficiency of wild-type Svep1 increased endothelial CXCL1 expression leading to enhanced recruitment of proinflammatory leukocytes from blood to plaque. Consequently, elevated vascular inflammation resulted in enhanced plaque progression in Svep1 deficiency.
Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Moléculas de Adhesión Celular/metabolismo , Enfermedad de la Arteria Coronaria/metabolismo , Vasos Coronarios/metabolismo , Proteínas/metabolismo , Animales , Antígenos Ly/metabolismo , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Moléculas de Adhesión Celular/deficiencia , Moléculas de Adhesión Celular/genética , Células Cultivadas , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Quimiotaxis de Leucocito , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/patología , Vasos Coronarios/patología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Haploinsuficiencia , Humanos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Infiltración Neutrófila , Neutrófilos/patología , Placa Aterosclerótica , Polimorfismo de Nucleótido Simple , Proteínas/genéticaRESUMEN
Early characterization of the immunostimulatory potential of therapeutic antisense oligonucleotides (ASOs) is crucial. At present, little is known about the toll-like receptor 9 (TLR9)-mediated immunostimulatory potential of third-generation locked nucleic acid (LNA)-modified ASOs. In this study, we have systematically investigated the TLR9-activating potential of LNA-modified oligonucleotides using different mouse and human cell culture systems. Although it has been reported that LNA modifications as well as cytosine methylation of 5'-cytosine-phosphate-guanine-3' (CpG) motifs can reduce TLR9 stimulation by phosphorothioate (PTO)-modified oligonucleotides, we identified CpG-containing LNA gapmers with substantial TLR9-stimulatory activity. We further identified immunostimulatory LNA gapmers without CpG motifs. Unexpectedly, methylation of cytosines only within the CpG motif did not necessarily reduce but could even increase TLR9 activation. In contrast, systematic methylation of all cytosines reduced or even abrogated TLR9 activation in most cases. Context dependently, the introduction of LNA-modifications into the flanks could either increase or decrease TLR9 stimulation. Overall, our results indicate that TLR9-dependent immunostimulatory potential is an individual feature of an oligonucleotide and needs to be investigated on a case-by-case basis.
Asunto(s)
Oligonucleótidos Antisentido , Oligonucleótidos , Receptor Toll-Like 9 , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Animales , Humanos , Ratones , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/química , Oligonucleótidos/genética , Oligonucleótidos/farmacología , Oligonucleótidos/química , Islas de CpG/genética , Metilación de ADN/efectos de los fármacosRESUMEN
Background: Inflammation strongly contributes to atherosclerosis initiation and progression. Consequently, recent clinical trials pharmacologically targeted vascular inflammation to decrease the incidence of atherosclerosis-related complications. Colchicine, a microtubule inhibitor with anti-inflammatory properties, reduced cardiovascular events in patients with recent acute coronary syndrome and chronic coronary disease. However, the biological basis of these observations remains elusive. We sought to explore the mechanism by which colchicine beneficially alters the course of atherosclerosis. Methods and Results: In mice with early atherosclerosis (Apoe-/- mice on a high cholesterol diet for 8 weeks), we found that colchicine treatment (0.25 mg/kg bodyweight once daily over four weeks) reduced numbers of neutrophils, inflammatory monocytes and macrophages inside atherosclerotic aortas using flow cytometry and immunohistochemistry. Consequently, colchicine treatment resulted in a less inflammatory plaque composition and reduced plaque size. We next investigated how colchicine prevented plaque leukocyte expansion and found that colchicine treatment mitigated recruitment of blood neutrophils and inflammatory monocytes to plaques as revealed by adoptive transfer experiments. Causally, we found that colchicine reduced levels of both leukocyte adhesion molecules and receptors for leukocyte chemoattractants on blood neutrophils and monocytes. Further experiments showed that colchicine treatment reduced vascular inflammation also in post-myocardial infarction accelerated atherosclerosis through similar mechanisms as documented in early atherosclerosis. When we examined whether colchicine also decreased numbers of macrophages inside atherosclerotic plaques by impacting monocyte/macrophage transitioning or in-situ proliferation of macrophages, we report that colchicine treatment did not influence macrophage precursor differentiation or macrophage proliferation using cell culture experiments with bone marrow derived macrophages. Conclusions: Our data reveal that colchicine prevents expansion of plaque inflammatory leukocytes through lowering recruitment of blood myeloid cells to plaques. These data provide novel mechanistic clues on the beneficial effects of colchicine in the treatment of atherosclerosis and may inform future anti-inflammatory interventions in patients at risk.
Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Aterosclerosis/prevención & control , Colchicina/farmacología , Colchicina/uso terapéutico , Inflamación/prevención & control , Leucocitos , Ratones , Placa Aterosclerótica/tratamiento farmacológicoRESUMEN
AIMS: Targeting vascular inflammation represents a novel therapeutic approach to reduce complications of atherosclerosis. Neutralizing the pro-inflammatory cytokine interleukin-1ß (IL-1ß) using canakinumab, a monoclonal antibody, reduces the incidence of cardiovascular events in patients after myocardial infarction (MI). The biological basis for these beneficial effects remains incompletely understood. We sought to explore the mechanisms of IL-1ß-targeted therapies. METHODS AND RESULTS: In mice with early atherosclerosis (ApoE-/- mice on a high-cholesterol diet for 6 weeks), we found that 3 weeks of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3)-inflammasome inhibition or anti-IL-1ß treatment (using either MCC950, an NLRP3-inflammasome inhibitor which blocks production and release of active IL-1ß, or a murine analogue of canakinumab) dampened accumulation of leucocytes in atherosclerotic aortas, which consequently resulted in slower progression of atherosclerosis. Causally, we found that endothelial cells from atherosclerotic aortas lowered expression of leucocyte chemoattractants and adhesion molecules upon NLRP3-inflammasome inhibition, indicating that NLRP3-inflammasome- and IL-1ß-targeted therapies reduced blood leucocyte recruitment to atherosclerotic aortas. In accord, adoptive transfer experiments revealed that anti-IL-1ß treatment mitigated blood myeloid cell uptake to atherosclerotic aortas. We further report that anti-IL-1ß treatment and NLRP3-inflammasome inhibition reduced inflammatory leucocyte supply by decreasing proliferation of bone marrow haematopoietic stem and progenitor cells, demonstrating that suppression of IL-1ß and the NLRP3-inflammasome lowered production of disease-propagating leucocytes. Using bone marrow reconstitution experiments, we observed that haematopoietic cell-specific NLRP3-inflammasome activity contributed to both enhanced recruitment and increased supply of blood inflammatory leucocytes. Further experiments that queried whether anti-IL-1ß treatment reduced vascular inflammation also in post-MI accelerated atherosclerosis documented the operation of convergent mechanisms (reduced supply and uptake of inflammatory leucocytes). In line with our pre-clinical findings, post-MI patients on canakinumab treatment showed reduced blood monocyte numbers. CONCLUSIONS: Our murine and human data reveal that anti-IL-1ß treatment and NLRP3-inflammasome inhibition dampened vascular inflammation and progression of atherosclerosis through reduced blood inflammatory leucocyte (i) supply and (ii) uptake into atherosclerotic aortas providing additional mechanistic insights into links between haematopoiesis and atherogenesis, and into the beneficial effects of NLRP3-inflammasome- and IL-1ß-targeted therapies.
Asunto(s)
Aterosclerosis , Inflamasomas , Interleucina-1beta , Animales , Humanos , Ratones , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Factores Quimiotácticos/uso terapéutico , Colesterol , Células Endoteliales/metabolismo , Inflamasomas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/prevención & control , Interleucina-1beta/metabolismo , Ratones Noqueados para ApoE , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismoRESUMEN
Significance: Atherosclerosis and its complications, such as acute coronary syndromes, are the leading causes of death worldwide. A wide range of inflammatory processes substantially contribute to the initiation and progression of cardiovascular disease (CVD). In addition, epidemiological studies strongly associate both chronic stress and acute psychosocial stress with the occurrence of CVDs. Recent Advances: Extensive research during recent decades has not only identified major pathways in cardiovascular inflammation but also revealed a link between psychosocial factors and the immune system in the context of atherosclerosis. Both chronic and acute psychosocial stress drive systemic inflammation via neuroimmune interactions and promote atherosclerosis progression. Critical Issues: The associations human epidemiological studies found between psychosocial stress and cardiovascular inflammation have been substantiated by additional experimental studies in mice and humans. However, we do not yet fully understand the mechanisms through which psychosocial stress drives cardiovascular inflammation; consequently, specific treatment, although urgently needed, is lacking. Future Directions: Psychosocial factors are increasingly acknowledged as risk factors for CVD and are currently treated via behavioral interventions. Additional mechanistic insights might provide novel pharmacological treatment options to reduce stress-related morbidity and mortality. Antioxid. Redox Signal. 35, 1531-1550.
Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Animales , Aterosclerosis/etiología , Enfermedades Cardiovasculares/tratamiento farmacológico , Inflamación/complicaciones , Ratones , Factores de Riesgo , Estrés Psicológico/complicacionesRESUMEN
Atherosclerosis is the leading cause of death worldwide and leukocyte recruitment is a key element of this phenomenon, thus allowing immune cells to enter the arterial wall. There, in concert with accumulating lipids, the invading leukocytes trigger a plethora of inflammatory responses which promote the influx of additional leukocytes and lead to the continued growth of atherosclerotic plaques. The recruitment process follows a precise scheme of tethering, rolling, firm arrest, crawling and transmigration and involves multiple cellular and subcellular players. This review aims to provide a comprehensive up-to-date insight into the process of leukocyte recruitment relevant to atherosclerosis, each from the perspective of endothelial cells, monocytes and macrophages, neutrophils, T lymphocytes and platelets. In addition, therapeutic options targeting leukocyte recruitment into atherosclerotic lesions-or potentially arising from the growing body of insights into its precise mechanisms-are highlighted.
RESUMEN
Excess nutrient uptake and altered hormone secretion in the gut contribute to a systemic energy imbalance, which causes obesity and an increased risk of type 2 diabetes and colorectal cancer. This functional maladaptation is thought to emerge at the level of the intestinal stem cells (ISCs). However, it is not clear how an obesogenic diet affects ISC identity and fate. Here we show that an obesogenic diet induces ISC and progenitor hyperproliferation, enhances ISC differentiation and cell turnover and changes the regional identities of ISCs and enterocytes in mice. Single-cell resolution of the enteroendocrine lineage reveals an increase in progenitors and peptidergic enteroendocrine cell types and a decrease in serotonergic enteroendocrine cell types. Mechanistically, we link increased fatty acid synthesis, Ppar signaling and the Insr-Igf1r-Akt pathway to mucosal changes. This study describes molecular mechanisms of diet-induced intestinal maladaptation that promote obesity and therefore underlie the pathogenesis of the metabolic syndrome and associated complications.