Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Res Commun ; 4(3): 849-860, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38466568

RESUMEN

Accumulating evidence indicates that various oncogenic mutations interfere with normal myeloid differentiation of leukemogenic cells during the early process of acute myeloid leukemia (AML) development. Differentiation therapy is a therapeutic strategy capable of terminating leukemic expansion by reactivating the differentiation potential; however, the plasticity and instability of leukemia cells counteract the establishment of treatments aimed at irreversibly inducing and maintaining their differentiation states. On the basis of our previous observation that autophagy inhibitor treatment induces the accumulation of cytosolic DNA and activation of cytosolic DNA-sensor signaling selectively in leukemia cells, we herein examined the synergistic effect of cytosolic DNA-sensor signaling activation with conventional differentiation therapy on AML. The combined treatment succeeded in inducing irreversible differentiation in AML cell lines. Mechanistically, cytosolic DNA was sensed by absent in melanoma 2 (AIM2), a cytosolic DNA sensor. Activation of the AIM2 inflammasome resulted in the accumulation of p21 through the inhibition of its proteasomal degradation, thereby facilitating the myeloid differentiation. Importantly, the combined therapy dramatically reduced the total leukemia cell counts and proportion of blast cells in the spleens of AML mice. Collectively, these findings indicate that the autophagy inhibition-cytosolic DNA-sensor signaling axis can potentiate AML differentiation therapy. SIGNIFICANCE: Clinical effects on AML therapy are closely associated with reactivating the normal myeloid differentiation potential in leukemia cells. This study shows that autophagosome formation inhibitors activate the cytosolic DNA-sensor signaling, thereby augmenting conventional differentiation therapy to induce irreversible differentiation and cell growth arrest in several types of AML cell lines.


Asunto(s)
Hematopoyesis , Leucemia Mieloide Aguda , Animales , Ratones , Diferenciación Celular , Leucemia Mieloide Aguda/tratamiento farmacológico , ADN/farmacología , Autofagia/genética
2.
Leukemia ; 38(8): 1731-1741, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914715

RESUMEN

Aggressive natural killer cell leukemia (ANKL) is a rare hematological malignancy with a fulminant clinical course. Our previous study revealed that ANKL cells proliferate predominantly in the liver sinusoids and strongly depend on transferrin supplementation. In addition, we demonstrated that liver-resident ANKL cells are sensitive to PPMX-T003, an anti-human transferrin receptor 1 inhibitory antibody, whereas spleen-resident ANKL cells are resistant to transferrin receptor 1 inhibition. However, the microenvironmental factors that regulate the iron dependency of ANKL cells remain unclear. In this study, we first revealed that the anti-neoplastic effect of PPMX-T003 was characterized by DNA double-strand breaks in a DNA replication-dependent manner, similar to conventional cytotoxic agents. We also found that the influx of extracellular amino acids via LAT1 stimulated sensitivity to PPMX-T003. Taken together, we discovered that the amount of extracellular amino acid influx through LAT1 was the key environmental factor determining the iron dependency of ANKL cells via adjustment of their mTOR/Myc activity, which provides a good explanation for the different sensitivity to PPMX-T003 between liver- and spleen-resident ANKL cells, as the liver sinusoid contains abundant amino acids absorbed from the gut.


Asunto(s)
Aminoácidos , Hierro , Células Asesinas Naturales , Transportador de Aminoácidos Neutros Grandes 1 , Humanos , Hierro/metabolismo , Células Asesinas Naturales/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Aminoácidos/metabolismo , Receptores de Transferrina/metabolismo , Ratones , Animales , Hígado/metabolismo , Hígado/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA